Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 22(11): 3732-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22542012

ABSTRACT

A series of substituted benzofuropyrimidinones with pan-PIM activities and excellent selectivity against a panel of diverse kinases is described. Initial exploration identified aryl benzofuropyrimidinones that were potent, but had cell permeability limitation. Using X-ray crystal structures of the bound PIM-1 complexes with 3, 5m, and 6d, we were able to guide the SAR and identify the alkyl benzofuropyrimidinone (6l) with good PIM potencies, permeability, and oral exposure.


Subject(s)
Drug Design , Furans/chemistry , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrimidinones/chemistry , Binding Sites , Computer Simulation , Crystallography, X-Ray , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Structure-Activity Relationship
2.
Cancer Res ; 69(20): 8009-16, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19808973

ABSTRACT

The Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are overexpressed and/or activated in a wide variety of human malignancies. Vascular endothelial growth factor (VEGF) receptors are expressed on the surface of vascular endothelial cells and cooperate with Met to induce tumor invasion and vascularization. EXEL-2880 (XL880, GSK1363089) is a small-molecule kinase inhibitor that targets members of the HGF and VEGF receptor tyrosine kinase families, with additional inhibitory activity toward KIT, Flt-3, platelet-derived growth factor receptor beta, and Tie-2. Binding of EXEL-2880 to Met and VEGF receptor 2 (KDR) is characterized by a very slow off-rate, consistent with X-ray crystallographic data showing that the inhibitor is deeply bound in the Met kinase active site cleft. EXEL-2880 inhibits cellular HGF-induced Met phosphorylation and VEGF-induced extracellular signal-regulated kinase phosphorylation and prevents both HGF-induced responses of tumor cells and HGF/VEGF-induced responses of endothelial cells. In addition, EXEL-2880 prevents anchorage-independent proliferation of tumor cells under both normoxic and hypoxic conditions. In vivo, these effects produce significant dose-dependent inhibition of tumor burden in an experimental model of lung metastasis. Collectively, these data indicate that EXEL-2880 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of invasion and angiogenesis mediated by HGF and VEGF receptors.


Subject(s)
Anilides/pharmacology , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Animals , Apoptosis/drug effects , Blotting, Western , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/prevention & control , Phosphorylation/drug effects , Proto-Oncogene Proteins c-met/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Umbilical Veins/cytology , Umbilical Veins/drug effects , Umbilical Veins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL