Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Publication year range
1.
Eur Respir J ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575161

ABSTRACT

BACKGROUND: Some individuals experience prolonged illness after acute COVID-19. We assessed whether pre-infection symptoms affected post-COVID illness duration. METHODS: Survival analysis was performed in adults (n=23 452) with community-managed SARC-CoV-2 infection prospectively self-logging data through the ZOE COVID Symptom Study app, at least weekly, from 8 weeks before to 12 weeks after COVID-19 onset, conditioned on presence versus absence of baseline symptoms (4-8 weeks before COVID-19). A case-control study was performed in 1350 individuals with long illness (≥8 weeks, 906 [67.1%] with illness ≥12 weeks), matched 1:1 (for age, sex, body mass index, testing week, prior infection, vaccination, smoking, index of multiple deprivation) with 1350 individuals with short illness (<4 weeks). Baseline symptoms were compared between the two groups; and against post-COVID symptoms. RESULTS: Individuals reporting baseline symptoms had longer post-COVID symptom duration (from 10 to 15 days) with baseline fatigue nearly doubling duration. Two-thirds (910 of 1350 [67.4%]) of individuals with long illness were asymptomatic beforehand. However, 440 (32.6%) had baseline symptoms, versus 255 (18.9%) of 1350 individuals with short illness (p<0.0001). Baseline symptoms increased the odds ratio for long illness (2.14 [CI: 1.78; 2.57]). Prior comorbidities were more common in individuals with long versus short illness. In individuals with long illness, baseline symptomatic (versus asymptomatic) individuals were more likely to be female, younger, and have prior comorbidities; and baseline and post-acute symptoms and symptom burden correlated strongly. CONCLUSIONS: Individuals experiencing symptoms before COVID-19 have longer illness duration and increased odds of long illness. However, many individuals with long illness are well before SARS-CoV-2 infection.

2.
Lancet ; 399(10335): 1618-1624, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35397851

ABSTRACT

BACKGROUND: The SARS-CoV-2 variant of concern, omicron, appears to be less severe than delta. We aim to quantify the differences in symptom prevalence, risk of hospital admission, and symptom duration among the vaccinated population. METHODS: In this prospective longitudinal observational study, we collected data from participants who were self-reporting test results and symptoms in the ZOE COVID app (previously known as the COVID Symptoms Study App). Eligible participants were aged 16-99 years, based in the UK, with a body-mass index between 15 and 55 kg/m2, had received at least two doses of any SARS-CoV-2 vaccine, were symptomatic, and logged a positive symptomatic PCR or lateral flow result for SARS-CoV-2 during the study period. The primary outcome was the likelihood of developing a given symptom (of the 32 monitored in the app) or hospital admission within 7 days before or after the positive test in participants infected during omicron prevalence compared with those infected during delta prevalence. FINDINGS: Between June 1, 2021, and Jan 17, 2022, we identified 63 002 participants who tested positive for SARS-CoV-2 and reported symptoms in the ZOE app. These patients were matched 1:1 for age, sex, and vaccination dose, across two periods (June 1 to Nov 27, 2021, delta prevalent at >70%; n=4990, and Dec 20, 2021, to Jan 17, 2022, omicron prevalent at >70%; n=4990). Loss of smell was less common in participants infected during omicron prevalence than during delta prevalence (16·7% vs 52·7%, odds ratio [OR] 0·17; 95% CI 0·16-0·19, p<0·001). Sore throat was more common during omicron prevalence than during delta prevalence (70·5% vs 60·8%, 1·55; 1·43-1·69, p<0·001). There was a lower rate of hospital admission during omicron prevalence than during delta prevalence (1·9% vs 2·6%, OR 0·75; 95% CI 0·57-0·98, p=0·03). INTERPRETATION: The prevalence of symptoms that characterise an omicron infection differs from those of the delta SARS-CoV-2 variant, apparently with less involvement of the lower respiratory tract and reduced probability of hospital admission. Our data indicate a shorter period of illness and potentially of infectiousness which should impact work-health policies and public health advice. FUNDING: Wellcome Trust, ZOE, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, and Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Hospitals , Humans , Prevalence , Prospective Studies , SARS-CoV-2/genetics
3.
Neuroimage ; 225: 117460, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33075562

ABSTRACT

Quantitative characterization of disease progression using longitudinal data can provide long-term predictions for the pathological stages of individuals. This work studies the robust modeling of Alzheimer's disease progression using parametric methods. The proposed method linearly maps the individual's age to a disease progression score (DPS) and jointly fits constrained generalized logistic functions to the longitudinal dynamics of biomarkers as functions of the DPS using M-estimation. Robustness of the estimates is quantified using bootstrapping via Monte Carlo resampling, and the estimated inflection points of the fitted functions are used to temporally order the modeled biomarkers in the disease course. Kernel density estimation is applied to the obtained DPSs for clinical status classification using a Bayesian classifier. Different M-estimators and logistic functions, including a novel type proposed in this study, called modified Stannard, are evaluated on the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for robust modeling of volumetric magnetic resonance imaging (MRI) and positron emission tomography (PET) biomarkers, cerebrospinal fluid (CSF) measurements, as well as cognitive tests. The results show that the modified Stannard function fitted using the logistic loss achieves the best modeling performance with an average normalized mean absolute error (NMAE) of 0.991 across all biomarkers and bootstraps. Applied to the ADNI test set, this model achieves a multiclass area under the ROC curve (AUC) of 0.934 in clinical status classification. The obtained results for the proposed model outperform almost all state-of-the-art results in predicting biomarker values and classifying clinical status. Finally, the experiments show that the proposed model, trained using abundant ADNI data, generalizes well to data from the National Alzheimer's Coordinating Center (NACC) with an average NMAE of 1.182 and a multiclass AUC of 0.929.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Disease Progression , Entorhinal Cortex/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Logistic Models , Magnetic Resonance Imaging , Male , Mental Status and Dementia Tests , Neuropsychological Tests , Positron-Emission Tomography , Temporal Lobe/diagnostic imaging , tau Proteins/metabolism
4.
Neuroimage ; 232: 117821, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33588030

ABSTRACT

Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In addition, the performance of four software packages with their default settings for rigid inter-modality image registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of one amyloid positive and one amyloid negative participants were investigated. For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty (up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET data obtained from either PET/MR or PET/CT scanners.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Positron-Emission Tomography/standards , Uncertainty , Aged , Cohort Studies , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods
5.
Thorax ; 76(7): 714-722, 2021 07.
Article in English | MEDLINE | ID: mdl-33402392

ABSTRACT

BACKGROUND: The association between current tobacco smoking, the risk of developing symptomatic COVID-19 and the severity of illness is an important information gap. METHODS: UK users of the Zoe COVID-19 Symptom Study app provided baseline data including demographics, anthropometrics, smoking status and medical conditions, and were asked to log their condition daily. Participants who reported that they did not feel physically normal were then asked by the app to complete a series of questions, including 14 potential COVID-19 symptoms and about hospital attendance. The main study outcome was the development of 'classic' symptoms of COVID-19 during the pandemic defined as fever, new persistent cough and breathlessness and their association with current smoking. The number of concurrent COVID-19 symptoms was used as a proxy for severity and the pattern of association between symptoms was also compared between smokers and non-smokers. RESULTS: Between 24 March 2020 and 23 April 2020, data were available on 2 401 982 participants, mean (SD) age 43.6 (15.1) years, 63.3% female, overall smoking prevalence 11.0%. 834 437 (35%) participants reported being unwell and entered one or more symptoms. Current smokers were more likely to report symptoms suggesting a diagnosis of COVID-19; classic symptoms adjusted OR (95% CI) 1.14 (1.10 to 1.18); >5 symptoms 1.29 (1.26 to 1.31); >10 symptoms 1.50 (1.42 to 1.58). The pattern of association between reported symptoms did not vary between smokers and non-smokers. INTERPRETATION: These data are consistent with people who smoke being at an increased risk of developing symptomatic COVID-19.


Subject(s)
COVID-19/epidemiology , Mobile Applications , Pneumonia, Viral/epidemiology , Smoking/epidemiology , Adult , Aged , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Prevalence , Risk , SARS-CoV-2 , Severity of Illness Index , United Kingdom/epidemiology
6.
J Neurol Neurosurg Psychiatry ; 92(12): 1254-1258, 2021 12.
Article in English | MEDLINE | ID: mdl-34583944

ABSTRACT

BACKGROUND: Mental health issues have been reported after SARS-CoV-2 infection. However, comparison to prevalence in uninfected individuals and contribution from common risk factors (eg, obesity and comorbidities) have not been examined. We identified how COVID-19 relates to mental health in the large community-based COVID Symptom Study. METHODS: We assessed anxiety and depression symptoms using two validated questionnaires in 413148 individuals between February and April 2021; 26998 had tested positive for SARS-CoV-2. We adjusted for physical and mental prepandemic comorbidities, body mass index (BMI), age and sex. FINDINGS: Overall, 26.4% of participants met screening criteria for general anxiety and depression. Anxiety and depression were slightly more prevalent in previously SARS-CoV-2-positive (30.4%) vs SARS-CoV-2-negative (26.1%) individuals. This association was small compared with the effect of an unhealthy BMI and the presence of other comorbidities, and not evident in younger participants (≤40 years). Findings were robust to multiple sensitivity analyses. Association between SARS-CoV-2 infection and anxiety and depression was stronger in individuals with recent (<30 days) versus more distant (>120 days) infection, suggesting a short-term effect. INTERPRETATION: A small association was identified between SARS-CoV-2 infection and anxiety and depression symptoms. The proportion meeting criteria for self-reported anxiety and depression disorders is only slightly higher than prepandemic.


Subject(s)
Anxiety/epidemiology , COVID-19/psychology , Depression/epidemiology , Mobile Applications , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Mental Health , Middle Aged , Prevalence , SARS-CoV-2 , Self Report , Young Adult
7.
Age Ageing ; 50(1): 40-48, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32986799

ABSTRACT

BACKGROUND: Frailty, increased vulnerability to physiological stressors, is associated with adverse outcomes. COVID-19 exhibits a more severe disease course in older, comorbid adults. Awareness of atypical presentations is critical to facilitate early identification. OBJECTIVE: To assess how frailty affects presenting COVID-19 symptoms in older adults. DESIGN: Observational cohort study of hospitalised older patients and self-report data for community-based older adults. SETTING: Admissions to St Thomas' Hospital, London with laboratory-confirmed COVID-19. Community-based data for older adults using the COVID Symptom Study mobile application. SUBJECTS: Hospital cohort: patients aged 65 and over (n = 322); unscheduled hospital admission between 1 March 2020 and 5 May 2020; COVID-19 confirmed by RT-PCR of nasopharyngeal swab. Community-based cohort: participants aged 65 and over enrolled in the COVID Symptom Study (n = 535); reported test-positive for COVID-19 from 24 March (application launch) to 8 May 2020. METHODS: Multivariable logistic regression analysis performed on age-matched samples from hospital and community-based cohorts to ascertain association of frailty with symptoms of confirmed COVID-19. RESULTS: Hospital cohort: significantly higher prevalence of probable delirium in the frail sample, with no difference in fever or cough. Community-based cohort: significantly higher prevalence of possible delirium in frailer, older adults and fatigue and shortness of breath. CONCLUSIONS: This is the first study demonstrating higher prevalence of probable delirium as a COVID-19 symptom in older adults with frailty compared to other older adults. This emphasises need for systematic frailty assessment and screening for delirium in acutely ill older patients in hospital and community settings. Clinicians should suspect COVID-19 in frail adults with delirium.


Subject(s)
COVID-19 , Delirium , Frailty , Risk Assessment/methods , SARS-CoV-2/isolation & purification , Aged , COVID-19/epidemiology , COVID-19/psychology , COVID-19/therapy , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/statistics & numerical data , Cohort Studies , Delirium/diagnosis , Delirium/epidemiology , Delirium/etiology , Female , Frail Elderly , Frailty/diagnosis , Frailty/epidemiology , Frailty/etiology , Geriatric Assessment/methods , Hospitalization/statistics & numerical data , Humans , London/epidemiology , Male , Prevalence , Risk Factors
8.
Neuroimage ; 223: 117271, 2020 12.
Article in English | MEDLINE | ID: mdl-32835824

ABSTRACT

Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer.


Subject(s)
Cerebellar Cortex/diagnostic imaging , Cerebellar Cortex/pathology , Down Syndrome/diagnostic imaging , Down Syndrome/pathology , Magnetic Resonance Imaging/methods , Neurons/pathology , Animals , Contrast Media , Disease Models, Animal , Gadolinium/administration & dosage , Image Enhancement/methods , Male , Mice, Inbred C57BL , Staining and Labeling/methods
9.
Brain ; 142(7): 2082-2095, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31219516

ABSTRACT

Posterior cortical atrophy is a clinico-radiological syndrome characterized by progressive decline in visual processing and atrophy of posterior brain regions. With the majority of cases attributable to Alzheimer's disease and recent evidence for genetic risk factors specifically related to posterior cortical atrophy, the syndrome can provide important insights into selective vulnerability and phenotypic diversity. The present study describes the first major longitudinal investigation of posterior cortical atrophy disease progression. Three hundred and sixty-one individuals (117 posterior cortical atrophy, 106 typical Alzheimer's disease, 138 controls) fulfilling consensus criteria for posterior cortical atrophy-pure and typical Alzheimer's disease were recruited from three centres in the UK, Spain and USA. Participants underwent up to six annual assessments involving MRI scans and neuropsychological testing. We constructed longitudinal trajectories of regional brain volumes within posterior cortical atrophy and typical Alzheimer's disease using differential equation models. We compared and contrasted the order in which regional brain volumes become abnormal within posterior cortical atrophy and typical Alzheimer's disease using event-based models. We also examined trajectories of cognitive decline and the order in which different cognitive tests show abnormality using the same models. Temporally aligned trajectories for eight regions of interest revealed distinct (P < 0.002) patterns of progression in posterior cortical atrophy and typical Alzheimer's disease. Patients with posterior cortical atrophy showed early occipital and parietal atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion leading to tissue loss of comparable extent later. Hippocampal, entorhinal and frontal regions underwent a lower rate of change and never approached the extent of posterior cortical involvement. Patients with typical Alzheimer's disease showed early hippocampal atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion. Cognitive models showed tests sensitive to visuospatial dysfunction declined earlier in posterior cortical atrophy than typical Alzheimer's disease whilst tests sensitive to working memory impairment declined earlier in typical Alzheimer's disease than posterior cortical atrophy. These findings indicate that posterior cortical atrophy and typical Alzheimer's disease have distinct sites of onset and different profiles of spatial and temporal progression. The ordering of disease events both motivates investigation of biological factors underpinning phenotypic heterogeneity, and informs the selection of measures for clinical trials in posterior cortical atrophy.


Subject(s)
Alzheimer Disease/pathology , Cerebral Cortex/pathology , Cognitive Dysfunction/pathology , Alzheimer Disease/complications , Case-Control Studies , Cognitive Dysfunction/complications , Disease Progression , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Models, Neurological , Neuropsychological Tests
10.
Neuroimage ; 188: 282-290, 2019 03.
Article in English | MEDLINE | ID: mdl-30529631

ABSTRACT

Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease.


Subject(s)
Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Prodromal Symptoms , Spatio-Temporal Analysis , Thalamus/diagnostic imaging , Thalamus/pathology , Cohort Studies , Female , Humans , Male , Middle Aged
11.
Neuroimage ; 179: 187-198, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29908313

ABSTRACT

The rabbit model has become increasingly popular in neurodevelopmental studies as it is best suited to bridge the gap in translational research between small and large animals. In the context of preclinical studies, high-resolution magnetic resonance imaging (MRI) is often the best modality to investigate structural and functional variability of the brain, both in vivo and ex vivo. In most of the MRI-based studies, an important requirement to analyze the acquisitions is an accurate parcellation of the considered anatomical structures. Manual segmentation is time-consuming and typically poorly reproducible, while state-of-the-art automated segmentation algorithms rely on available atlases. In this work we introduce the first digital neonatal rabbit brain atlas consisting of 12 multi-modal acquisitions, parcellated into 89 areas according to a hierarchical taxonomy. Delineations were performed iteratively, alternating between segmentation propagation, label fusion and manual refinements, with the aim of controlling the quality while minimizing the bias introduced by the chosen sequence. Reliability and accuracy were assessed with cross-validation and intra- and inter-operator test-retests. Multi-atlas, versioned controlled segmentations repository and supplementary materials download links are available from the software repository documentation at https://github.com/gift-surg/SPOT-A-NeonatalRabbit.


Subject(s)
Animals, Newborn/anatomy & histology , Atlases as Topic , Brain/anatomy & histology , Rabbits/anatomy & histology , Animals , Image Processing, Computer-Assisted , Magnetic Resonance Imaging
12.
Hum Brain Mapp ; 39(7): 3005-3017, 2018 07.
Article in English | MEDLINE | ID: mdl-29575324

ABSTRACT

Alzheimer's disease (AD) is associated with extensive alterations in grey matter microstructure, but our ability to quantify this in vivo is limited. Neurite orientation dispersion and density imaging (NODDI) is a multi-shell diffusion MRI technique that estimates neuritic microstructure in the form of orientation dispersion and neurite density indices (ODI/NDI). Mean values for cortical thickness, ODI, and NDI were extracted from predefined regions of interest in the cortical grey matter of 38 patients with young onset AD and 22 healthy controls. Five cortical regions associated with early atrophy in AD (entorhinal cortex, inferior temporal gyrus, middle temporal gyrus, fusiform gyrus, and precuneus) and one region relatively spared from atrophy in AD (precentral gyrus) were investigated. ODI, NDI, and cortical thickness values were compared between controls and patients for each region, and their associations with MMSE score were assessed. NDI values of all regions were significantly lower in patients. Cortical thickness measurements were significantly lower in patients in regions associated with early atrophy in AD, but not in the precentral gyrus. Decreased ODI was evident in patients in the inferior and middle temporal gyri, fusiform gyrus, and precuneus. The majority of AD-related decreases in cortical ODI and NDI persisted following adjustment for cortical thickness, as well as each other. There was evidence in the patient group that cortical NDI was associated with MMSE performance. These data suggest distinct differences in cortical NDI and ODI occur in AD and these metrics provide pathologically relevant information beyond that of cortical thinning.


Subject(s)
Alzheimer Disease/pathology , Cerebral Cortex/pathology , Diffusion Magnetic Resonance Imaging/methods , Neurites , Neuroimaging/methods , Age of Onset , Aged , Alzheimer Disease/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Middle Aged
13.
Alzheimers Dement ; 14(1): 43-53, 2018 01.
Article in English | MEDLINE | ID: mdl-28738187

ABSTRACT

INTRODUCTION: Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. METHODS: Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. RESULTS: Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. DISCUSSION: Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Adult , Apolipoproteins E/genetics , Atrophy/etiology , Atrophy/pathology , Brain/physiopathology , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Psychiatric Status Rating Scales , Statistics, Nonparametric , Time Factors
14.
BMC Neurol ; 17(1): 75, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28420323

ABSTRACT

BACKGROUND: Increasing age is the biggest risk factor for dementia, of which Alzheimer's disease is the commonest cause. The pathological changes underpinning Alzheimer's disease are thought to develop at least a decade prior to the onset of symptoms. Molecular positron emission tomography and multi-modal magnetic resonance imaging allow key pathological processes underpinning cognitive impairment - including ß-amyloid depostion, vascular disease, network breakdown and atrophy - to be assessed repeatedly and non-invasively. This enables potential determinants of dementia to be delineated earlier, and therefore opens a pre-symptomatic window where intervention may prevent the onset of cognitive symptoms. METHODS/DESIGN: This paper outlines the clinical, cognitive and imaging protocol of "Insight 46", a neuroscience sub-study of the MRC National Survey of Health and Development. This is one of the oldest British birth cohort studies and has followed 5362 individuals since their birth in England, Scotland and Wales during one week in March 1946. These individuals have been tracked in 24 waves of data collection incorporating a wide range of health and functional measures, including repeat measures of cognitive function. Now aged 71 years, a small fraction have overt dementia, but estimates suggest that ~1/3 of individuals in this age group may be in the preclinical stages of Alzheimer's disease. Insight 46 is recruiting 500 study members selected at random from those who attended a clinical visit at 60-64 years and on whom relevant lifecourse data are available. We describe the sub-study design and protocol which involves a prospective two time-point (0, 24 month) data collection covering clinical, neuropsychological, ß-amyloid positron emission tomography and magnetic resonance imaging, biomarker and genetic information. Data collection started in 2015 (age 69) and aims to be completed in 2019 (age 73). DISCUSSION: Through the integration of data on the socioeconomic environment and on physical, psychological and cognitive function from 0 to 69 years, coupled with genetics, structural and molecular imaging, and intensive cognitive and neurological phenotyping, Insight 46 aims to identify lifetime factors which influence brain health and cognitive ageing, with particular focus on Alzheimer's disease and cerebrovascular disease. This will provide an evidence base for the rational design of disease-modifying trials.


Subject(s)
Early Diagnosis , Research Design , Aged , Alzheimer Disease/diagnosis , Biomarkers/analysis , Dementia/diagnosis , England , Female , Humans , Male , Middle Aged , Scotland
15.
Neuroimage ; 111: 580-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25681570

ABSTRACT

Preterm birth is a major public health concern, with the severity and occurrence of adverse outcome increasing with earlier delivery. Being born preterm disrupts a time of rapid brain development: in addition to volumetric growth, the cortex folds, myelination is occurring and there are changes on the cellular level. These neurological events have been imaged non-invasively using diffusion-weighted (DW) MRI. In this population, there has been a focus on examining diffusion in the white matter, but the grey matter is also critically important for neurological health. We acquired multi-shell high-resolution diffusion data on 12 infants born at ≤ 28 weeks of gestational age at two time-points: once when stable after birth, and again at term-equivalent age. We used the Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang et al., 2012) to analyse the changes in the cerebral cortex and the thalamus, both grey matter regions. We showed region-dependent changes in NODDI parameters over the preterm period, highlighting underlying changes specific to the microstructure. This work is the first time that NODDI parameters have been evaluated in both the cortical and the thalamic grey matter as a function of age in preterm infants, offering a unique insight into neuro-development in this at-risk population.


Subject(s)
Cerebral Cortex/growth & development , Gray Matter/growth & development , Infant, Premature/growth & development , Magnetic Resonance Imaging/methods , Thalamus/growth & development , Female , Gestational Age , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Multimodal Imaging
16.
Neuroimage ; 123: 149-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26275383

ABSTRACT

Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: -1.4% to -2.2% (AD) and -0.35% to -0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: -1.5% to -7.0% (AD) and -0.4% to -1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Aged , Atrophy , Data Interpretation, Statistical , Female , Hippocampus/pathology , Humans , Male , Middle Aged , Reproducibility of Results
17.
Eur J Nucl Med Mol Imaging ; 42(9): 1447-58, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26105119

ABSTRACT

Positron Emission Tomography/Magnetic Resonance Imaging (PET/MR) scanners are expected to offer a new range of clinical applications. Attenuation correction is an essential requirement for quantification of PET data but MRI images do not directly provide a patient-specific attenuation map. Methods We further validate and extend a Computed Tomography (CT) and attenuation map (µ-map) synthesis method based on pre-acquired MRI-CT image pairs. The validation consists of comparing the CT images synthesised with the proposed method to the original CT images. PET images were acquired using two different tracers ((18)F-FDG and (18)F-florbetapir). They were then reconstructed and corrected for attenuation using the synthetic µ-maps and compared to the reference PET images corrected with the CT-based µ-maps. During the validation, we observed that the CT synthesis was inaccurate in areas such as the neck and the cerebellum, and propose a refinement to mitigate these problems, as well as an extension of the method to multi-contrast MRI data. Results With the improvements proposed, a significant enhancement in CT synthesis, which results in a reduced absolute error and a decrease in the bias when reconstructing PET images, was observed. For both tracers, on average, the absolute difference between the reference PET images and the PET images corrected with the proposed method was less than 2%, with a bias inferior to 1%. Conclusion With the proposed method, attenuation information can be accurately derived from MRI images by synthesising CT using routine anatomical sequences. MRI sequences, or combination of sequences, can be used to synthesise CT images, as long as they provide sufficient anatomical information.


Subject(s)
Aniline Compounds , Ethylene Glycols , Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Multimodal Imaging , Positron-Emission Tomography , Brain/diagnostic imaging , Humans , Radioactive Tracers , Sensitivity and Specificity , Tomography, X-Ray Computed
18.
Alzheimers Dement ; 11(7): 740-56, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26194310

ABSTRACT

INTRODUCTION: Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders. METHODS: We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3. RESULTS: Contributions of the MRI core include creating standardized acquisition protocols and quality control methods; examining the effect of technical features of image acquisition and analysis on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in multicenter clinical trials. DISCUSSION: Over the past decade the MRI core of ADNI has fulfilled its mandate of improving methods for clinical trials in AD and will continue to do so in the future.


Subject(s)
Alzheimer Disease/diagnosis , Brain/pathology , Magnetic Resonance Imaging , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Biomarkers/cerebrospinal fluid , Brain/blood supply , Brain/diagnostic imaging , Cognition Disorders/etiology , History, 20th Century , History, 21st Century , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/history , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Positron-Emission Tomography , Spin Labels
19.
Brain ; 136(Pt 5): 1399-414, 2013 May.
Article in English | MEDLINE | ID: mdl-23539189

ABSTRACT

Amyloid imaging studies of presymptomatic familial Alzheimer's disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer's disease. As the thalamus and striatum are involved in neural networks subserving complex cognitive and behavioural functions, we also examined the diffusion characteristics in connecting white matter tracts. A cohort of 20 presenilin 1 mutation carriers underwent volumetric and diffusion tensor magnetic resonance imaging, neuropsychological and clinical assessments; 10 were symptomatic, 10 were presymptomatic and on average 5.6 years younger than their expected age at onset; 20 healthy control subjects were also studied. We conducted region of interest analyses of volume and diffusivity changes in the thalamus, caudate, putamen and hippocampus and examined diffusion behaviour in the white matter tracts of interest (fornix, cingulum and corpus callosum). Voxel-based morphometry and tract-based spatial statistics were also used to provide unbiased whole-brain analyses of group differences in volume and diffusion indices, respectively. We found that reduced volumes of the left thalamus and bilateral caudate were evident at a presymptomatic stage, together with increased fractional anisotropy of bilateral thalamus and left caudate. Although no significant hippocampal volume loss was evident presymptomatically, reduced mean diffusivity was observed in the right hippocampus and reduced mean and axial diffusivity in the right cingulum. In contrast, symptomatic mutation carriers showed increased mean, axial and in particular radial diffusivity, with reduced fractional anisotropy, in all of the white matter tracts of interest. The symptomatic group also showed atrophy and increased mean diffusivity in all of the subcortical grey matter regions of interest, with increased fractional anisotropy in bilateral putamen. We propose that axonal injury may be an early event in presymptomatic Alzheimer's disease, causing an initial fall in axial and mean diffusivity, which then increases with loss of axonal density. The selective degeneration of long-coursing white matter tracts, with relative preservation of short interneurons, may account for the increase in fractional anisotropy that is seen in the thalamus and caudate presymptomatically. It may be owing to their dense connectivity that imaging changes are seen first in the thalamus and striatum, which then progress to involve other regions in a vulnerable neuronal network.


Subject(s)
Alzheimer Disease/diagnosis , Asymptomatic Diseases/epidemiology , Caudate Nucleus/pathology , Thalamus/pathology , Adult , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cohort Studies , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Male , Middle Aged , Mutation/genetics
20.
Neurocase ; 20(6): 684-94, 2014.
Article in English | MEDLINE | ID: mdl-23998300

ABSTRACT

We report a case of frontotemporal dementia caused by a novel MAPT mutation (Q351R) with a remarkably long amnestic presentation mimicking familial Alzheimer's disease. Longitudinal clinical, neuropsychological and imaging data provide convergent evidence for predominantly bilateral anterior medial temporal lobe involvement consistent with previously established neuroanatomical signatures of MAPT mutations. This case supports the notion that the neural network affected in MAPT mutations is determined to a large extent by the underlying molecular pathology. We discuss the diagnostic significance of anomia in the context of atypical amnesia and the impact of impaired episodic and semantic memory systems on autobiographical memory.


Subject(s)
Amnesia/complications , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Mutation , tau Proteins/genetics , Alzheimer Disease/diagnosis , Anomia/complications , Brain/pathology , Disease Progression , Female , Frontotemporal Dementia/complications , Hippocampus/pathology , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL