Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(1): 86-96, 2019 01.
Article in English | MEDLINE | ID: mdl-30538335

ABSTRACT

Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.


Subject(s)
B-Lymphocytes/physiology , Germinal Center/pathology , Histone Demethylases/metabolism , Lymphoma/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Animals , CRISPR-Cas Systems , Carcinogenesis , DNA, Intergenic/genetics , Germinal Center/immunology , Histone Demethylases/genetics , Hyperplasia , Immunological Synapses/genetics , Introns/genetics , Lymphoma/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-bcl-6/genetics
2.
Blood ; 131(15): 1730-1742, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29453291

ABSTRACT

Epigenetic regulators are recurrently mutated and aberrantly expressed in acute myeloid leukemia (AML). Targeted therapies designed to inhibit these chromatin-modifying enzymes, such as the histone demethylase lysine-specific demethylase 1 (LSD1) and the histone methyltransferase DOT1L, have been developed as novel treatment modalities for these often refractory diseases. A common feature of many of these targeted agents is their ability to induce myeloid differentiation, suggesting that multiple paths toward a myeloid gene expression program can be engaged to relieve the differentiation blockade that is uniformly seen in AML. We performed a comparative assessment of chromatin dynamics during the treatment of mixed lineage leukemia (MLL)-AF9-driven murine leukemias and MLL-rearranged patient-derived xenografts using 2 distinct but effective differentiation-inducing targeted epigenetic therapies, the LSD1 inhibitor GSK-LSD1 and the DOT1L inhibitor EPZ4777. Intriguingly, GSK-LSD1 treatment caused global gains in chromatin accessibility, whereas treatment with EPZ4777 caused global losses in accessibility. We captured PU.1 and C/EBPα motif signatures at LSD1 inhibitor-induced dynamic sites and chromatin immunoprecipitation coupled with high-throughput sequencing revealed co-occupancy of these myeloid transcription factors at these sites. Functionally, we confirmed that diminished expression of PU.1 or genetic deletion of C/EBPα in MLL-AF9 cells generates resistance of these leukemias to LSD1 inhibition. These findings reveal that pharmacologic inhibition of LSD1 represents a unique path to overcome the differentiation block in AML for therapeutic benefit.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Leukemia, Biphenotypic, Acute/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins/genetics , Response Elements , Trans-Activators/genetics
3.
Haematologica ; 104(6): 1156-1167, 2019 06.
Article in English | MEDLINE | ID: mdl-30514804

ABSTRACT

Lysine specific demethylase 1 (LSD1) is a histone modifying enzyme that suppresses gene expression through demethylation of lysine 4 on histone H3. The anti-tumor activity of GSK2879552 and GSK-LSD1, potent, selective irreversible inactivators of LSD1, has previously been described. Inhibition of LSD1 results in a cytostatic growth inhibitory effect in a range of acute myeloid leukemia cell lines. To enhance the therapeutic potential of LSD1 inhibition in this disease setting, a combination of LSD1 inhibition and all-trans retinoic acid was explored. All-trans retinoic acid is currently approved for use in acute promyelocytic leukemia in which it promotes differentiation of abnormal blast cells into normal white blood cells. Combined treatment with all-trans retinoic acid and GSK2879552 results in synergistic effects on cell proliferation, markers of differentiation, and, most importantly, cytotoxicity. Ultimately the combination potential for LSD1 inhibition and ATRA will require validation in acute myeloid leukemia patients, and clinical studies to assess this are currently underway.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Tretinoin/pharmacology , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Benzoates/pharmacology , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopropanes/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Treatment Outcome , Tretinoin/administration & dosage
4.
Nat Genet ; 39(2): 237-42, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17211412

ABSTRACT

Adult cancers may derive from stem or early progenitor cells. Epigenetic modulation of gene expression is essential for normal function of these early cells but is highly abnormal in cancers, which often show aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors. We find that for such genes, both normal and malignant embryonic cells generally lack the hypermethylation of DNA found in adult cancers. In embryonic stem cells, these genes are held in a 'transcription-ready' state mediated by a 'bivalent' promoter chromatin pattern consisting of the repressive mark, histone H3 methylated at Lys27 (H3K27) by Polycomb group proteins, plus the active mark, methylated H3K4. However, embryonic carcinoma cells add two key repressive marks, dimethylated H3K9 and trimethylated H3K9, both associated with DNA hypermethylation in adult cancers. We hypothesize that cell chromatin patterns and transient silencing of these important regulatory genes in stem or progenitor cells may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing during tumor initiation and progression.


Subject(s)
Chromatin/metabolism , DNA Methylation , Genes, Tumor Suppressor , Stem Cells/metabolism , Adult , Cell Proliferation , Embryonic Stem Cells/metabolism , Gene Silencing , Histones/metabolism , Humans , Polycomb-Group Proteins , Promoter Regions, Genetic , Repressor Proteins/metabolism , Tumor Cells, Cultured
5.
Nucleic Acids Res ; 40(10): 4334-46, 2012 May.
Article in English | MEDLINE | ID: mdl-22278882

ABSTRACT

While DNA methyltransferase1 (DNMT1) is classically known for its functions as a maintenance methyltransferase enzyme, additional roles for DNMT1 in gene expression are not as clearly understood. Several groups have shown that deletion of the catalytic domain from DNMT1 does not abolish repressive activity of the protein against a reporter gene. In our studies, we examine the repressor function of catalytically inactive DNMT1 at endogenous genes. First, potential DNMT1 target genes were identified by searching for genes up-regulated in HCT116 colon cancer cells genetically disrupted for DNMT1 (DNMT1(-/-) hypomorph cells). Next, the requirement for DNMT1 activity for repression of these genes was assessed by stably restoring expression of wild-type or catalytically inactive DNMT1. Both wild-type and mutant proteins are able to occupy the promoters and repress the expression of a set of target genes, and induce, at these promoters, both the depletion of active histone marks and the recruitment of a H3K4 demethylase, KDM1A/LSD1. Together, our findings show that there are genes for which DNMT1 acts as a transcriptional repressor independent from its methyltransferase function and that this repressive function may invoke a role for a scaffolding function of the protein at target genes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Gene Expression Regulation , Histone Demethylases/metabolism , Repressor Proteins/metabolism , Biocatalysis , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Histones/metabolism , Humans , Mutation , Promoter Regions, Genetic , Repressor Proteins/genetics
6.
Cancer Immunol Res ; 10(4): 420-436, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35181787

ABSTRACT

Protein arginine methyltransferases (PRMT) are a widely expressed class of enzymes responsible for catalyzing arginine methylation on numerous protein substrates. Among them, type I PRMTs are responsible for generating asymmetric dimethylarginine. By controlling multiple basic cellular processes, such as DNA damage responses, transcriptional regulation, and mRNA splicing, type I PRMTs contribute to cancer initiation and progression. A type I PRMT inhibitor, GSK3368715, has been developed and has entered clinical trials for solid and hematologic malignancies. Although type I PRMTs have been reported to play roles in modulating immune cell function, the immunologic role of tumor-intrinsic pathways controlled by type I PRMTs remains uncharacterized. Here, our The Cancer Genome Atlas dataset analysis revealed that expression of type I PRMTs associated with poor clinical response and decreased immune infiltration in patients with melanoma. In cancer cell lines, inhibition of type I PRMTs induced an IFN gene signature, amplified responses to IFN and innate immune signaling, and decreased expression of the immunosuppressive cytokine VEGF. In immunocompetent mouse tumor models, including a model of T-cell exclusion that represents a common mechanism of anti-programmed cell death protein 1 (PD-1) resistance in humans, type I PRMT inhibition increased T-cell infiltration, produced durable responses dependent on CD8+ T cells, and enhanced efficacy of anti-PD-1 therapy. These data indicate that type I PRMT inhibition exhibits immunomodulatory properties and synergizes with immune checkpoint blockade (ICB) to induce durable antitumor responses in a T cell-dependent manner, suggesting that type I PRMT inhibition can potentiate an antitumor immunity in refractory settings.


Subject(s)
Intracellular Signaling Peptides and Proteins , Protein-Arginine N-Methyltransferases , Animals , Arginine , Humans , Immunity , Mice , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
7.
PLoS Genet ; 4(8): e1000155, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18704159

ABSTRACT

Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island-containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer.


Subject(s)
CpG Islands , DNA Breaks, Double-Stranded , DNA Methylation , Gene Silencing , Promoter Regions, Genetic , Sirtuins/metabolism , Cell Line, Tumor , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Humans , Sirtuin 1 , Sirtuins/genetics , DNA Methyltransferase 3B
8.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Article in English | MEDLINE | ID: mdl-34790902

ABSTRACT

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , DNA/metabolism , DNA Methylation , DNA Modification Methylases/genetics , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mice
9.
Mol Cancer Res ; 18(2): 264-277, 2020 02.
Article in English | MEDLINE | ID: mdl-31704733

ABSTRACT

Activation of the epithelial-to-mesenchymal transition (EMT) program is a critical mechanism for initiating cancer progression and migration. Colorectal cancers contain many genetic and epigenetic alterations that can contribute to EMT. Mutations activating the PI3K/AKT signaling pathway are observed in >40% of patients with colorectal cancer contributing to increased invasion and metastasis. Little is known about how oncogenic signaling pathways such as PI3K/AKT synergize with chromatin modifiers to activate the EMT program. Lysine-specific demethylase 1 (LSD1) is a chromatin-modifying enzyme that is overexpressed in colorectal cancer and enhances cell migration. In this study, we determine that LSD1 expression is significantly elevated in patients with colorectal cancer with mutation of the catalytic subunit of PI3K, PIK3CA, compared with patients with colorectal cancer with WT PIK3CA. LSD1 enhances activation of the AKT kinase in colorectal cancer cells through a noncatalytic mechanism, acting as a scaffolding protein for the transcription-repressing CoREST complex. In addition, growth of PIK3CA-mutant colorectal cancer cells is uniquely dependent on LSD1. Knockdown or CRISPR knockout of LSD1 blocks AKT-mediated stabilization of the EMT-promoting transcription factor Snail and effectively blocks AKT-mediated EMT and migration. Overall, we uniquely demonstrate that LSD1 mediates AKT activation in response to growth factors and oxidative stress, and LSD1-regulated AKT activity promotes EMT-like characteristics in a subset of PIK3CA-mutant cells. IMPLICATIONS: Our data support the hypothesis that inhibitors targeting the CoREST complex may be clinically effective in patients with colorectal cancer harboring PIK3CA mutations.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Histone Demethylases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Knockout Techniques , HCT116 Cells , HT29 Cells , Histone Demethylases/genetics , Humans , Mutation , Phosphorylation , Protein Stability , Proto-Oncogene Proteins c-akt/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Transfection
10.
Sci Rep ; 10(1): 22155, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335114

ABSTRACT

Arginine methylation has been recognized as a post-translational modification with pleiotropic effects that span from regulation of transcription to metabolic processes that contribute to aberrant cell proliferation and tumorigenesis. This has brought significant attention to the development of therapeutic strategies aimed at blocking the activity of protein arginine methyltransferases (PRMTs), which catalyze the formation of various methylated arginine products on a wide variety of cellular substrates. GSK3368715 is a small molecule inhibitor of type I PRMTs currently in clinical development. Here, we evaluate the effect of type I PRMT inhibition on arginine methylation in normal human peripheral blood mononuclear cells and utilize a broad proteomic approach to identify type I PRMT substrates. This work identified heterogenous nuclear ribonucleoprotein A1 (hnRNP-A1) as a pharmacodynamic biomarker of type I PRMT inhibition. Utilizing targeted mass spectrometry (MS), methods were developed to detect and quantitate changes in methylation of specific arginine residues on hnRNP-A1. This resulted in the development and validation of novel MS and immune assays useful for the assessment of GSK3368715 induced pharmacodynamic effects in blood and tumors that can be applied to GSK3368715 clinical trials.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Biomarkers , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacology , Arginine/metabolism , Cells, Cultured , Chromatography, Liquid , Drug Monitoring , Enzyme Activation , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Heterogeneous Nuclear Ribonucleoprotein A1/blood , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mass Spectrometry , Methylation , Mice , Molecular Targeted Therapy , Neoplasms/blood , Neoplasms/drug therapy , Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL