Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Semin Cancer Biol ; 86(Pt 2): 645-663, 2022 11.
Article in English | MEDLINE | ID: mdl-35405339

ABSTRACT

Evident role of inflammation in cancer development and progression prompted the application of anti-inflammatory medications as a therapeutic strategy. The major bottleneck for the anti-inflammatory drugs is targeted delivery to the cancerous cell. Nanotechnology has provided safe and effective way for targeted cancer therapy. However, the complex and heterogeneous traits of cancer, incomplete information on fate and behavior of nanomedicines in human body, and lack of large-scale commercial production have slowed down the pace of nanomedicines development. To shift the paradigm from conventional cancer therapeutics to anti-inflammatory nano-therapeutics, thorough understanding of the strategies, progress, success, challenges and future perspectives are needed. The present review highlights all these aspects in addition to innovations patented on them. In fact, patent plays a vital role in protection of innovations, and further translation of lab-scale outcomes into bedside medications. Thus, the review introspects and recognizes the glitches in successful clinical translation of anti-inflammatory nanomedicines.


Subject(s)
Nanomedicine , Neoplasms , Humans , Drug Delivery Systems , Nanotechnology , Neoplasms/drug therapy , Inflammation/drug therapy
2.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613881

ABSTRACT

In the current study, the reversed-phased high-pressure liquid chromatography (RP-HPLC) method was proposed for the estimation of lignocaine hydrochloride (LIG), hydrocortisone (HYD) and Ketoprofen (KET) according to International Conference for Harmonization (ICH) Q2 R1 guidelines, in a gel formulation. The chromatographic evaluation was executed using Shimadzu RP-HPLC, equipped with a C8 column and detected using UV at 254 nm wavelength, using acetonitrile and buffer (50:50) as a mobile phase and diluent, at flow rate 1 mL/min and n injection volume of 20 µL. The retention time for LIG, HYD, and KET were 1.54, 2.57, and 5.78 min, correspondingly. The resultant values of analytical recovery demonstrate accuracy and precision of the method and was found specific in identification of the drugs from dosage form and marketed products. The limit of detection (LOD) for LIG, HYD, and KET were calculated to be 0.563, 0.611, and 0.669 ppm, while the limit of quantification (LOQ) was estimated almost at 1.690, 1.833, and 0.223 ppm, respectively. The AGREE software was utilized to evaluate the greenness score of the proposed method, and it was found greener in score (0.76). This study concluded that the proposed method was simple, accurate, precise, robust, economical, reproducible, and suitable for the estimation of drugs in transdermal gels.


Subject(s)
Ketoprofen , Chromatography, High Pressure Liquid/methods , Hydrocortisone , Limit of Detection , Reproducibility of Results
3.
Entropy (Basel) ; 24(7)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35885104

ABSTRACT

The association of COVID-19 with neurological complications is a well-known fact, and researchers are endeavoring to investigate the mechanistic perspectives behind it. SARS-CoV-2 can bind to Toll-like receptor 4 (TLR-4) that would eventually lead to α-synuclein aggregation in neurons and stimulation of neurodegeneration pathways. Olive leaves have been reported as a promising phytotherapy or co-therapy against COVID-19, and oleuropein is one of the major active components of olive leaves. In the current study, oleuropein was investigated against SARS-CoV-2 target (main protease 3CLpro), TLR-4 and Prolyl Oligopeptidases (POP), to explore oleuropein potency against the neurological complications associated with COVID-19. Docking experiments, docking validation, interaction analysis, and molecular dynamic simulation analysis were performed to provide insight into the binding pattern of oleuropein with the three target proteins. Interaction analysis revealed strong bonding between oleuropein and the active site amino acid residues of the target proteins. Results were further compared with positive control lopinavir (3CLpro), resatorvid (TLR-4), and berberine (POP). Moreover, molecular dynamic simulation was performed using YASARA structure tool, and AMBER14 force field was applied to examine an 100 ns trajectory run. For each target protein-oleuropein complex, RMSD, RoG, and total potential energy were estimated, and 400 snapshots were obtained after each 250 ps. Docking analyses showed binding energy as -7.8, -8.3, and -8.5 kcal/mol for oleuropein-3CLpro, oleuropein-TLR4, and oleuropein-POP interactions, respectively. Importantly, target protein-oleuropein complexes were stable during the 100 ns simulation run. However, an experimental in vitro study of the binding of oleuropein to the purified targets would be necessary to confirm the present study outcomes.

4.
Curr Issues Mol Biol ; 43(2): 932-940, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34449548

ABSTRACT

Prostate cancer (PCa) is addressed as the second most common form of onco-threat worldwide and is usually considered as the major cause of mortality in men. Recent times have seen a surge in exploration of plant-derived components for alternative therapeutical interventions against different oncological malignancies. Dammarolic acid or Asiatic acid (AsA) is an aglycone asiaticoside that has been reported for its efficacy in several ailments including cancer. The current study aimed to investigate the anti-proliferative potency of AsA against human prostate cancer PC-3 cells. Purified AsA was diluted and PC-3 cells were exposed to 20, 40, and 80 µM concentration and incubated for 24 h. Post-exposure, PC-3 cells showcased a substantial loss of their viability at 20 µM (p < 0.05), moreover, this reduction in cell viability escalated proportionally with an increase in AsA at concentrations of 40 and 80 µM (p < 0.01; p < 0.001) respectively. AsA-impelled loss of cellular viability was also evident from the acridine orange-stained photomicrographs, which was also used to quantify the viable and apoptotic cells using Image J software. Additionally, quantification of ROS within PC-3 cells also exhibited an increase in DCF-DA-mediated fluorescence intensity post-exposure to AsA in a dose-dependent manner. AsA-induced apoptosis in PC-3 cells was shown to be associated with augmented activity of caspase-3 proportionally to the AsA concentrations. Thus, initially, this exploratory study explicated that AsA treatment leads to anti-proliferative effects in PC-3 cells by enhancing oxidative stress and inciting apoptosis en route to onset of nuclear fragmentation.


Subject(s)
NF-kappa B/antagonists & inhibitors , Pentacyclic Triterpenes/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Anti-Infective Agents/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Male , NF-kappa B/metabolism , PC-3 Cells , Prostatic Neoplasms/metabolism , Triterpenes/pharmacology
5.
Metab Brain Dis ; 36(5): 829-847, 2021 06.
Article in English | MEDLINE | ID: mdl-33704660

ABSTRACT

Neurodegeneration-associated dementia disorders (NADDs), namely Alzheimer and Parkinson diseases, are developed by a significant portion of the elderly population globally. Extensive research has provided critical insights into the molecular basis of the pathological advancements of these diseases, but an efficient curative therapy seems elusive. A common attribute of NADDs is neuroinflammation due to a chronic inflammatory response within the central nervous system (CNS), which is primarily modulated by microglia. This response within the CNS is positively regulated by cytokines, chemokines, secondary messengers or cyclic nucleotides, and free radicals. Microglia mediated immune activation is regulated by a positive feedback loop in NADDs. The present review focuses on evaluating the crosstalk between inflammatory mediators and microglia, which aggravates both the clinical progression and extent of NADDs by forming a persistent chronic inflammatory milieu within the CNS. We also discuss the role of the human gut microbiota and its effect on NADDs as well as the suitability of targeting toll-like receptors for an immunotherapeutic intervention targeting the deflation of an inflamed milieu within the CNS.


Subject(s)
Brain/metabolism , Dementia/metabolism , Inflammation/metabolism , Microglia/metabolism , Nerve Degeneration/metabolism , Toll-Like Receptors/metabolism , Animals , Brain/pathology , Dementia/pathology , Humans , Inflammation/pathology , Microglia/pathology , Nerve Degeneration/pathology
6.
AAPS PharmSciTech ; 21(4): 129, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32405982

ABSTRACT

Simvastatin a cholesterol-lowering agent used to treat hypercholesterolemia, coronary heart disease, and dyslipidemia. However, simvastatin (SV) has shown low oral bioavailability in GIT. The main purpose of the work was to develop proliposomal formulations to increase the oral bioavailability of SV. Film deposition on the carrier method has been used to prepare the proliposomes. The proliposomes were assessed for morphology, particulate size, entrapment efficacy, drug-polymer compatibility, in vitro and in vivo studies. FTIR and DSC results revealed no drug-polymer interaction. SEM and XRD analysis conform; proliposomes are spherical, amorphous in nature, so that it enhances the solubility of SV between 15.01 ± 0.026 and 57.80 ± 0.015 µg/mL in pH 7.4 phosphate buffer. The optimised formulation (PL6) shows drug release up to 12 h (99.78 ± 0.067%). The pharmacokinetics of pure SV and SV proliposomes (SVP) in rats were Tmax 2 ± 0.5 and 4 ± 0.7 h, Cmax 10.4 ± 2.921 and 21.18 ± 12.321 µg/mL, AUC0-∞ 67.124 ± 0.23 and 179.75 ± 1.541 µg/mL h, respectively. Optimised SVP shows a significant improvement in the rate and absorption of SV. The optimised formulation showed enhanced oral bioavailability of SV in Albino Wister rats and offers a new technique to improve the poor water-soluble drug absorption in the gastrointestinal system.


Subject(s)
Drug Delivery Systems/methods , Drug Liberation/physiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Simvastatin/administration & dosage , Simvastatin/blood , Administration, Oral , Animals , Biological Availability , Drug Evaluation, Preclinical/methods , Liposomes , Male , Particle Size , Rats , Solubility , X-Ray Diffraction/methods
7.
Pak J Pharm Sci ; 33(6(Supplementary)): 2847-2857, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33879446

ABSTRACT

Uropathogenic strains belonging to the Enterobacteriaceae family are considered one of factors for urinary tract infections, and type 1 pilus fimbrial adhesin (FimH) and beta lactamase CTX-M-15 play crucial roles in their pathogenesis and resistance. Thus, a promising approach is to explore dual-targeting therapeutic agents that act against both FimH and CTX-M-15. In the present study, active constituents of Nigella sativa were selected on the basis of significant activity against UTIs. Molecular docking was used to target active constituents of Nigella sativa to the active sites of FimH and CTX-M-15; these included thymoquinone, dithymoquinone, carvacrol, p-cymene, thymol, thymohydroquinone and longifolene. Dithymoquinone was found to be the most potent dual inhibitor, with binding energy of -7.01 and -5.38kcal/mol against CTX-M-15 and FimH, respectively; In addition, Dithymoquinone exhibited superior activity compared to positive controls avibactam and heptyl α-D-mannopyranoside. Further molecular dynamic simulation studies were carried out to assess the stability of dithymoquinone-target protein complexes via RMSD, Rg, SASA, hydrogen bond number, and RMSF analysis. Both protein-ligand complexes were conserved and attained equilibrium at around 2.0 to 2.5 ns during 10 ns runs. These results suggest that active constituents of Nigella sativa, particularly dithymoquinone, might represent a plausible therapeutic strategy against resistant uropathogenic bacteria.


Subject(s)
Adhesins, Bacterial/drug effects , Enterobacteriaceae/drug effects , Nigella sativa/chemistry , Urinary Tract Infections/drug therapy , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/drug effects , Bacterial Adhesion/drug effects , Drug Resistance, Bacterial , Molecular Docking Simulation , Urinary Tract Infections/microbiology
8.
Article in English | MEDLINE | ID: mdl-38963550

ABSTRACT

Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.

9.
Front Chem ; 12: 1352009, 2024.
Article in English | MEDLINE | ID: mdl-38435669

ABSTRACT

Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.

10.
Brain Sci ; 14(2)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38391759

ABSTRACT

Pediatric brain tumors are the major cause of pediatric cancer mortality. They comprise a diverse group of tumors with different developmental origins, genetic profiles, therapeutic options, and outcomes. Despite many technological advancements, the treatment of pediatric brain cancers has remained a challenge. Treatment options for pediatric brain cancers have been ineffective due to non-specificity, inability to cross the blood-brain barrier, and causing off-target side effects. In recent years, nanotechnological advancements in the medical field have proven to be effective in curing challenging cancers like brain tumors. Moreover, nanoparticles have emerged successfully, particularly in carrying larger payloads, as well as their stability, safety, and efficacy monitoring. In the present review, we will emphasize pediatric brain cancers, barriers to treating these cancers, and novel treatment options.

11.
Pharmaceutics ; 15(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36839753

ABSTRACT

The advent of new antibiotics has helped clinicians to control severe bacterial infections. Despite this, inappropriate and redundant use of antibiotics, inadequate diagnosis, and smart resistant mechanisms developed by pathogens sometimes lead to the failure of treatment strategies. The genotypic analysis of clinical samples revealed that the rapid spread of extended-spectrum ß-lactamases (ESBLs) genes is one of the most common approaches acquired by bacterial pathogens to become resistant. The scenario compelled the researchers to prioritize the design and development of novel and effective therapeutic options. Nanotechnology has emerged as a plausible groundbreaking tool against resistant infectious pathogens. Numerous reports suggested that inorganic nanomaterials, specifically gold nanoparticles (AuNPs), have converted unresponsive antibiotics into potent ones against multi-drug resistant pathogenic strains. Interestingly, after almost two decades of exhaustive preclinical evaluations, AuNPs are gradually progressively moving ahead toward clinical evaluations. However, the mechanistic aspects of the antibacterial action of AuNPs remain an unsolved puzzle for the scientific fraternity. Thus, the review covers state-of-the-art investigations pertaining to the efficacy of AuNPs as a tool to overcome ESBLs acquired resistance, their applicability and toxicity perspectives, and the revelation of the most appropriate proposed mechanism of action. Conclusively, the trend suggested that antibiotic-loaded AuNPs could be developed into a promising interventional strategy to limit and overcome the concerns of antibiotic-resistance.

12.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513913

ABSTRACT

Glaucoma is a progressive optic neuropathy characterized by a rise in the intraocular pressure (IOP) leading to optic nerve damage. Bimatoprost is a prostaglandin analogue used to reduce the elevated IOP in patients with glaucoma. The currently available dosage forms for Bimatoprost suffer from relatively low ocular bioavailability. The objective of this study was to fabricate and optimize solid lipid nanoparticles (SLNs) containing Bimatoprost for ocular administration for the management of glaucoma. Bimatoprost-loaded SLNs were fabricated by solvent evaporation/ultrasonication technique. Glyceryl Monostearate (GMS) was adopted as solid lipid and poloxamer 407 as surfactant. Optimization of SLNs was conducted by central composite design. The optimized formulation was assessed for average particle size, entrapment efficiency (%), zeta potential, surface morphology, drug release study, sterility test, isotonicity test, Hen's egg test-chorioallantoic membrane (HET-CAM) test and histopathology studies. The optimized Bimatoprost-loaded SLNs formulation had an average size of 183.3 ± 13.3 nm, zeta potential of -9.96 ± 1.2 mV, and encapsulation efficiency percentage of 71.8 ± 1.1%. Transmission electron microscopy (TEM) study revealed the nearly smooth surface of formulated particles with a nano-scale size range. In addition, SLNs significantly sustained Bimatoprost release for up to 12 h, compared to free drug (p < 005). Most importantly, HET-CAM test nullified the irritancy of the formulation was verified its tolerability upon ocular use, as manifested by a significant reduction in mean irritation score, compared to positive control (1% sodium dodecyl sulfate; p < 0.001). Histopathology study inferred the absence of any signs of cornea tissue damage upon treatment with Bimatoprost optimized formulation. Collectively, it was concluded that SLNs might represent a viable vehicle for enhancing the corneal permeation and ocular bioavailability of Bimatoprost for the management of glaucoma.

13.
Life (Basel) ; 13(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36676100

ABSTRACT

Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.

14.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36770436

ABSTRACT

Infections caused by resistant bacterial pathogens have increased the complications of clinicians worldwide. The quest for effective antibacterial agents against resistant pathogens has prompted researchers to develop new classes of antibiotics. Unfortunately, pathogens have acted more smartly by developing resistance to even the newest class of antibiotics with time. The culture sensitivity analysis of the clinical samples revealed that pathogens are gaining resistance toward the new generations of cephalosporins at a very fast rate globally. The current study developed gold nanoparticles (AuNPs) that could efficiently deliver the 2nd (cefotetan-CT) and 3rd (cefixime-CX) generation cephalosporins to resistant clinical pathogens. In fact, both CT and CX were used to reduce and stabilize AuNPs by applying a one-pot synthesis approach, and their characterization was performed via spectrophotometry, dynamic light scattering and electron microscopy. Moreover, the synthesized AuNPs were tested against uro-pathogenic resistant clinical strains of Escherichia coli and Klebsiella pneumoniae. CT-AuNPs characteristic SPR peak was observed at 542 nm, and CX-AuNPs showed the same at 522 nm. The stability measurement showed ζ potential as -24.9 mV and -25.2 mV for CT-AuNPs and CX-AuNPs, respectively. Scanning electron microscopy revealed the spherical shape of both the AuNPs, whereas, the size by transmission electron microscopy for CT-AuNPs and CX-AuNPs were estimated to be 45 ± 19 nm and 35 ± 17 nm, respectively. Importantly, once loaded onto AuNPs, both the cephalosporin antibiotics become extremely potent against the resistant strains of E. coli and K. pneumoniae with MIC50 in the range of 0.5 to 0.8 µg/mL. The findings propose that old-generation unresponsive antibiotics could be revived into potent nano-antibiotics via AuNPs. Thus, investing efforts, intellect, time and funds for a nano-antibiotic strategy might be a better approach to overcome resistance than investing the same in the development of newer antibiotic molecule(s).

15.
Gels ; 9(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37504456

ABSTRACT

Periodontitis is an inflammatory disorder associated with dysbiosis and characterized by microbiologically related, host-mediated inflammation that leads to the damage of periodontal tissues including gingiva, connective tissues, and alveolar bone. The aim of this study was to develop an in situ gel consisting of piperine. Eight in situ gel formulations were designed by varying the concentration of deacylated gellan gum cross-linked with sodium tripolyphosphate, and poloxamer-407. The prepared gels were evaluated for gelation temperature, gelation time, viscosity, piperine-loading efficiency, and piperine release. Finally, the optimized formula was evaluated for anti-inflammatory effectiveness among human patients during a 14-day follow-up. The optimized in situ gel formulation exhibited a gelation temperature of 35 ± 1 °C, gelling of 36 ± 1 s, excellent syringeability, and piperine loading of 95.3 ± 2.3%. This formulation efficiently sustained in vitro drug release for up to 72 h. In vivo studies revealed an efficient sol-to-gel transformation of optimized in situ gel formulation at physiological conditions, permitting an efficient residence time of the formulation within a periodontitis pocket. Most importantly, a clinical study revealed that treatment with the optimized formulation elicited a significant reduction in the mean plaque score (p = 0.001), gingival index (p = 0.003), and pocket depth (p = 0.002), and exerted a potent anti-inflammatory potential, compared to the control group. Collectively, piperine-loaded in situ gel might represent a viable therapeutic approach for the management of gingival and periodontal diseases.

16.
Pharmaceutics ; 15(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986887

ABSTRACT

Iron deficiency is the principal cause of nutritional anemia and it constitutes a major health problem, especially during pregnancy. Despite the availability of various non-invasive traditional oral dosage forms such as tablets, capsules, and liquid preparations of iron, they are hard to consume for special populations such as pregnant women, pediatric, and geriatric patients with dysphagia and vomiting tendency. The objective of the present study was to develop and characterize pullulan-based iron-loaded orodispersible films (i-ODFs). Microparticles of iron were formulated by a microencapsulation technique, to mask the bitter taste of iron, and ODFs were fabricated by a modified solvent casting method. Morphological characteristics of the microparticles were identified by optical microscopy and the percentage of iron loading was evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES). The fabricated i-ODFs were evaluated for their morphology by scanning electron microscopy. Other parameters including thickness, folding endurance, tensile strength, weight variation, disintegration time, percentage moisture loss, surface pH, and in vivo animal safety were evaluated. Lastly, stability studies were carried out at a temperature of 25 °C/60% RH. The results of the study confirmed that pullulan-based i-ODFs had good physicochemical properties, excellent disintegration time, and optimal stability at specified storage conditions. Most importantly, the i-ODFs were free from irritation when administered to the tongue as confirmed by the hamster cheek pouch model and surface pH determination. Collectively, the present study suggests that the film-forming agent, pullulan, could be successfully employed on a lab scale to formulate orodispersible films of iron. In addition, i-ODFs can be processed easily on a large scale for commercial use.

17.
Antibiotics (Basel) ; 12(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36978327

ABSTRACT

Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved resistance genes were screened in the resistant isolates. The current results showed high resistance rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation) and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The present findings showed a significant correlation between MLS resistance and reduced susceptibility to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role of efflux in developing cross-resistance to both MLS antibiotics and biocides.

18.
RSC Adv ; 13(35): 24309-24318, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37583664

ABSTRACT

The aim of this study was to develop biotinylated chitosan (Bio-Chi) decorated multi-walled carbon nanotubes (MWCNTs) for breast cancer therapy with the tyrosine kinase inhibitor, neratinib (NT). For achieving such a purpose, carboxylic acid functionalized multiwalled carbon nanotubes (c-MWCNTs) were initially decorated non-covalently with biotin-chitosan (Bio-Chi) coating for achieving a dual targeting mode; pH-dependent release with chitosan and biotin-receptor mediated active targeting with biotin. Afterwards, Bio-Chi decorated c-MWCNTs were loaded with the tyrosine kinase inhibitor, neratinib (NT). The formulation was then characterized by dynamic light scattering, FTIR and EDX. The drug loading efficiency was estimated to be 95.6 ± 1.2%. In vitro drug release studies revealed a pH-dependent release of NT from Bio-Chi decorated c-MWCNTs, with a higher drug release under acidic pH conditions. Sulforhodamine B (SRB) cytotoxicity assay of different NT formulations disclosed dose-dependent cytotoxicities against SkBr3 cell line, with a superior cytotoxicity observed with NT-loaded Bio-Chi-coated c-MWCNTs, compared to either free NT or NT-loaded naked c-MWCNTs. The IC50 values for free NT, NT-loaded c-MWCNTs and NT-loaded Bio-Chi-coated c-MWCNTs were 548.43 ± 23.1 µg mL-1, 319.55 ± 17.9 µg mL-1, and 257.75 ± 24.5 µg mL-1, respectively. Interestingly, competitive cellular uptake studies revealed that surface decoration of drug-loaded c-MWCNTs with Bio-Chi permitted an enhanced uptake of c-MWCNTs by breast cancer cells, presumably, via biotin receptors-mediated endocytosis. To sum up, Bio-Chi-decorated c-MWCNTs might be a promising delivery vehicle for mediating cell-specific drug delivery to breast cancer cells.

19.
Front Pharmacol ; 14: 1325184, 2023.
Article in English | MEDLINE | ID: mdl-38348349

ABSTRACT

At the molecular level, several developmental signaling pathways, such as Wnt/ß-catenin, have been associated with the initiation and subsequent progression of prostate carcinomas. The present report elucidated the anti-cancerous attributes of an anthraquinone, aloe-emodin (AE), against androgen-independent human prostate cancer DU145 cells. The cytotoxicity profiling of AE showed that it exerted significant cytotoxic effects and increased lactose dehydrogenase levels in DU145 cells (p < 0.01 and p < 0.001). AE also induced considerable reactive oxygen species (ROS)-mediated oxidative stress, which escalated at higher AE concentrations of 20 and 25 µM. AE also efficiently instigated nuclear fragmentation and condensation concomitantly, followed by the activation of caspase-3 and -9 within DU145 cells. AE further reduced the viability of mitochondria with increased cytosolic cytochrome-c levels (p < 0.01 and p < 0.001) in DU145 cells. Importantly, AE exposure was also correlated with reduced Wnt2 and ß-catenin mRNA levels along with their target genes, including cyclin D1 and c-myc. Furthermore, the molecular mechanism of AE was evaluated by performing molecular docking studies with Wnt2 and ß-catenin. Evidently, AE exhibited good binding energy scores toward Wnt2 and ß-catenin comparable with their respective standards, CCT036477 (Wnt2 inhibitor) and FH535 (ß-catenin inhibitor). Thus, it may be considered that AE was competent in exerting anti-growth effects against DU145 androgen-independent prostate cancer cells plausibly by modulating the expression of Wnt/ß-catenin signaling.

20.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35631386

ABSTRACT

The objective of the current study was to develop poly (lactic-co-glycolic acid) (PLGA) microspheres loaded with the anti-tuberculosis (anti-TB) fluoroquinolone, Levofloxacin (LVX), in the form of dry powder inhalation (DPI). LVX-loaded microspheres were fabricated by solvent evaporation technique. Central Composite Design (CCD) was adopted to optimize the microspheres, with desired particle size, drug loading, and drug entrapment efficiency, for targeting alveolar macrophages via non-invasive pulmonary delivery. Structural characterization studies by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction analysis revealed the absence of any possible chemical interaction between the drug and the polymer used for the preparation of microspheres. In addition, the optimized drug-loaded microspheres exhibited desired average aerodynamic diameter of 2.13 ± 1.24 µm and fine particle fraction of 75.35 ± 1.42%, indicating good aerosolization properties. In vivo data demonstrated that LVX-loaded microspheres had superior lung accumulation, as evident by a two-fold increase in the area under the curve AUC0-24h, as compared with plain LVX. Furthermore, LVX-loaded microspheres prolonged drug residence time in the lung and maintained a relatively high drug concentration for a longer time, which contributed to a reduced leakage in the systemic circulation. In conclusion, inhalable LVX-loaded microspheres might represent a plausible delivery vehicle for targeting pulmonary tuberculosis via enhancing the therapeutic efficacy of LVX while minimizing its systemic off-target side effects.

SELECTION OF CITATIONS
SEARCH DETAIL