Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36356572

ABSTRACT

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Hemagglutinins , Broadly Neutralizing Antibodies , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Viral , Ferrets , Antibodies, Neutralizing , Immunization
2.
Immunity ; 48(2): 339-349.e5, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29396163

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of infant mortality, and there are currently no licensed vaccines to protect this vulnerable population. A comprehensive understanding of infant antibody responses to natural RSV infection would facilitate vaccine development. Here, we isolated more than 450 RSV fusion glycoprotein (F)-specific antibodies from 7 RSV-infected infants and found that half of the antibodies recognized only two antigenic sites. Antibodies targeting both sites showed convergent sequence features, and structural studies revealed the molecular basis for their recognition of RSV F. A subset of antibodies targeting one of these sites displayed potent neutralizing activity despite lacking somatic mutations, and similar antibodies were detected in RSV-naive B cell repertoires, suggesting that expansion of these B cells in infants may be possible with suitably designed vaccine antigens. Collectively, our results provide fundamental insights into infant antibody responses and a framework for the rational design of age-specific RSV vaccines.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Respiratory Syncytial Virus Infections/immunology , Somatic Hypermutation, Immunoglobulin , Viral Fusion Proteins/immunology , Animals , B-Lymphocytes/immunology , Humans , Infant , Mice , Respiratory Syncytial Virus Vaccines/immunology
3.
Nature ; 592(7855): 623-628, 2021 04.
Article in English | MEDLINE | ID: mdl-33762730

ABSTRACT

Influenza vaccines that confer broad and durable protection against diverse viral strains would have a major effect on global health, as they would lessen the need for annual vaccine reformulation and immunization1. Here we show that computationally designed, two-component nanoparticle immunogens2 induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens contain 20 haemagglutinin glycoprotein trimers in an ordered array, and their assembly in vitro enables the precisely controlled co-display of multiple distinct haemagglutinin proteins in defined ratios. Nanoparticle immunogens that co-display the four haemagglutinins of licensed quadrivalent influenza vaccines elicited antibody responses in several animal models against vaccine-matched strains that were equivalent to or better than commercial quadrivalent influenza vaccines, and simultaneously induced broadly protective antibody responses to heterologous viruses by targeting the subdominant yet conserved haemagglutinin stem. The combination of potent receptor-blocking and cross-reactive stem-directed antibodies induced by the nanoparticle immunogens makes them attractive candidates for a supraseasonal influenza vaccine candidate with the potential to replace conventional seasonal vaccines3.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Influenza A virus/classification , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Nanomedicine , Nanoparticles , Animals , Disease Models, Animal , Female , Ferrets/immunology , Ferrets/virology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/virology , Male , Mice , Mice, Inbred BALB C , Models, Molecular
4.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28539444

ABSTRACT

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation.IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not available. We are developing a chimeric rB/HPIV3 vector expressing RSV F as a bivalent RSV/HPIV3 vaccine and have been evaluating means to increase RSV F immunogenicity. In this study, we evaluated the effects of improved stabilization of F in the pre-F conformation and of codon optimization resulting in reduced CpG content and greater pre-F expression. Reduced CpG content dampened the interferon response to infection, promoting higher replication and increased F expression. We demonstrate that improved pre-F stabilization and strategic manipulation of codon usage, together with efficient pre-F packaging into vector virions, significantly increased F immunogenicity in the bivalent RSV/HPIV3 vaccine. The improved immunogenicity included induction of increased titers of high-quality complement-independent antibodies with greater pre-F site Ø binding and greater protection against RSV challenge.


Subject(s)
Drug Carriers , Respiratory Syncytial Virus Vaccines/immunology , Respirovirus/physiology , Viral Fusion Proteins/immunology , Virion/metabolism , Virus Assembly , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Codon , Cricetinae , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Respirovirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Virion/genetics
5.
J Virol ; 90(16): 7508-7518, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27279612

ABSTRACT

UNLABELLED: Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE: RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by incorporating a low-fusion, subgroup B F protein in the genetic background of codon-deoptimized nonstructural protein genes and a deleted small hydrophobic protein gene. The resultant vaccine candidate, DB1, was attenuated, highly immunogenic, and protective against RSV challenge in cotton rats.


Subject(s)
Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cell Line , Disease Models, Animal , Epithelial Cells/physiology , Epithelial Cells/virology , Humans , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/pathogenicity , Respiratory Syncytial Viruses , Respiratory System/virology , Reverse Genetics , Sigmodontinae , Treatment Outcome , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Load
6.
J Virol ; 90(21): 10022-10038, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27581977

ABSTRACT

Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


Subject(s)
Antibodies, Neutralizing/genetics , Genetic Vectors/genetics , Parainfluenza Virus 3, Bovine/genetics , Parainfluenza Virus 3, Human/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Capsid/metabolism , Cattle , Cell Line , Chlorocebus aethiops , Cricetinae , Humans , Macaca mulatta , Parainfluenza Virus 3, Bovine/immunology , Parainfluenza Virus 3, Human/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respirovirus Infections/immunology , Respirovirus Infections/virology , Vero Cells , Viral Fusion Proteins/immunology , Virus Replication/genetics
7.
PLoS Pathog ; 11(7): e1005035, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26161532

ABSTRACT

Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens.


Subject(s)
Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , Epitopes, B-Lymphocyte/ultrastructure , Respiratory Syncytial Viruses/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cell Line , Chromatography, Gel , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Flow Cytometry , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/ultrastructure , Humans , Protein Structure, Quaternary , Surface Plasmon Resonance
8.
Proc Natl Acad Sci U S A ; 109(19): 7463-8, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22523242

ABSTRACT

Apical membrane antigen 1 (AMA1) is a conserved transmembrane adhesin of apicomplexan parasites that plays an important role in host-cell invasion. Toxoplasma gondii AMA1 (TgAMA1) is secreted onto the parasite surface and subsequently released by proteolytic cleavage within its transmembrane domain. To elucidate the function of TgAMA1 intramembrane proteolysis, we used a heterologous cleavage assay to characterize the determinants within the TgAMA1 transmembrane domain (ALIAGLAVGGVLLLALLGGGCYFA) that govern its processing. Quantitative analysis revealed that the TgAMA1(L/G) mutation enhanced cleavage by 13-fold compared with wild type. In contrast, the TgAMA1(AG/FF) mutation reduced cleavage by 30-fold, whereas the TgAMA1(GG/FF) mutation had a minor effect on proteolysis; mutating both motifs in a quadruple mutant blocked cleavage completely. We then complemented a TgAMA1 conditional knockout parasite line with plasmids expressing these TgAMA1 variants. Contrary to expectation, variants that increased or decreased TgAMA1 processing by >10-fold had no phenotypic consequences, revealing that the levels of rhomboid proteolysis in parasites are not delicately balanced. Only parasites transgenically expressing or carrying a true knock-in allele of the uncleavable TgAMA1(AG/FF+GG/FF) mutant showed a growth defect, which resulted from inhibiting invasion without perturbing intracellular replication. These data demonstrate that TgAMA1 cleavage plays a role in invasion, but refute a recently proposed model in which parasite replication within the host cell is regulated by intramembrane proteolysis of TgAMA1.


Subject(s)
Antigens, Protozoan/metabolism , Cell Membrane/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Amino Acid Sequence , Animals , Antigens, Protozoan/genetics , Blotting, Western , COS Cells , Cell Division , Cell Membrane/parasitology , Cells, Cultured , Chlorocebus aethiops , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host-Parasite Interactions , Humans , Male , Microscopy, Fluorescence , Molecular Sequence Data , Mutation , Proteolysis , Protozoan Proteins/genetics , Sequence Homology, Amino Acid , Toxoplasma/genetics , Toxoplasma/physiology
9.
iScience ; 26(10): 107830, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766976

ABSTRACT

Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.

10.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Article in English | MEDLINE | ID: mdl-37020354

ABSTRACT

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Subject(s)
COVID-19 , Communicable Diseases , Vaccines , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Vaccines/therapeutic use , Vaccination , Vaccine Development
11.
Sci Transl Med ; 13(583)2021 03 03.
Article in English | MEDLINE | ID: mdl-33658355

ABSTRACT

Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus-associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Primates/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/chemistry , Antigen-Antibody Complex/chemistry , Broadly Neutralizing Antibodies/biosynthesis , Broadly Neutralizing Antibodies/chemistry , COVID-19 , Ferritins/chemistry , Ferritins/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/immunology , Influenza, Human/virology , Macaca fascicularis , Models, Molecular , Nanoparticles/chemistry , Pandemics , Primates/virology , Protein Structure, Quaternary , SARS-CoV-2 , Translational Research, Biomedical
12.
Cell Microbiol ; 11(9): 1409-21, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19489936

ABSTRACT

The hepatitis E virus (HEV) causes hepatitis E and is an important human pathogen. We have previously shown that the HEV open reading frame 3 (ORF3) protein promotes survival of the host cell. Here we report finding increased expression of glycolytic pathway enzymes in ORF3-expressing cells. Promoter analysis of these genes revealed the ubiquitous presence of hypoxia inducible factor (HIF) responsive element (HRE). Dominant-negative and siRNA studies showed increased expression of glycolytic pathway genes by the ORF3 to be mediated by the HIF-1 transcription factor. Our results showed that HIF-1alpha, a highly unstable subunit of the HIF-1, was stabilized in ORF3-expressing cells. This was through phosphatidylinositol-3-kinase (PI3K) mediated activation of Akt/protein kinase B. Enhanced binding to the consensus HRE and increased transactivation activity of HIF-1 were also observed in ORF3-expressing cells. The HIF complex recruits the transcriptional adapter/histone acetyltransferase protein p300/CBP to target gene promoters and p300/CBP phosphorylation is required for this interaction. We show that ORF3-mediated extracellularly regulated kinase (Erk) activation was responsible for the observed increase in phosphorylation and transactivation activity of p300/CBP. Our results reveal a two-pronged strategy through which the ORF3 protein might modulate the energy homeostasis in HEV infected cells and thus contribute to pathogenesis.


Subject(s)
E1A-Associated p300 Protein/metabolism , Gene Expression Regulation , Hepatitis E virus/physiology , Host-Pathogen Interactions , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Transcription, Genetic , Viral Proteins/metabolism , Binding Sites , Cell Line , Gene Expression Profiling , Glycolysis , Humans , Metabolic Networks and Pathways/genetics , Phosphorylation , Promoter Regions, Genetic
13.
Nat Commun ; 11(1): 791, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034141

ABSTRACT

The conserved hemagglutinin (HA) stem has been a focus of universal influenza vaccine efforts. Influenza A group 1 HA stem-nanoparticles have been demonstrated to confer heterosubtypic protection in animals; however, the protection does not extend to group 2 viruses, due in part to differences in glycosylation between group 1 and 2 stems. Here, we show that introducing the group 2 glycan at Asn38HA1 to a group 1 stem-nanoparticle (gN38 variant) based on A/New Caledonia/20/99 (H1N1) broadens antibody responses to cross-react with group 2 HAs. Immunoglobulins elicited by the gN38 variant provide complete protection against group 2 H7N9 virus infection, while the variant loses protection against a group 1 H5N1 virus. The N38HA1 glycan thus is pivotal in directing antibody responses by controlling access to group-determining stem epitopes. Precise targeting of stem-directed antibody responses to the site of vulnerability by glycan repositioning may be a step towards achieving cross-group influenza protection.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Nanoparticles/chemistry , Polysaccharides/chemistry , Animals , Antibodies, Viral/immunology , Antibody Specificity , Asparagine/chemistry , Asparagine/metabolism , Broadly Neutralizing Antibodies/immunology , Cross Reactions , Epitopes/immunology , Female , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Immunoglobulins/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control
14.
mBio ; 10(1)2019 02 26.
Article in English | MEDLINE | ID: mdl-30808695

ABSTRACT

Influenza vaccines targeting the highly conserved stem of the hemagglutinin (HA) surface glycoprotein have the potential to protect against pandemic and drifted seasonal influenza viruses not covered by current vaccines. While HA stem-based immunogens derived from group 1 influenza A viruses have been shown to induce intragroup heterosubtypic protection, HA stem-specific antibody lineages originating from group 2 may be more likely to possess broad cross-group reactivity. We report the structure-guided development of mammalian-cell-expressed candidate vaccine immunogens based on influenza A virus group 2 H3 and H7 HA stem trimers displayed on self-assembling ferritin nanoparticles using an iterative, multipronged approach involving helix stabilization, loop optimization, disulfide bond addition, and side-chain repacking. These immunogens were thermostable, formed uniform and symmetric nanoparticles, were recognized by cross-group-reactive broadly neutralizing antibodies (bNAbs) with nanomolar affinity, and elicited protective, homosubtypic antibodies in mice. Importantly, several immunogens were able to activate B cells expressing inferred unmutated common ancestor (UCA) versions of cross-group-reactive human bNAbs from two multidonor classes, suggesting they could initiate elicitation of these bNAbs in humans.IMPORTANCE Current influenza vaccines are primarily strain specific, requiring annual updates, and offer minimal protection against drifted seasonal or pandemic strains. The highly conserved stem region of hemagglutinin (HA) of group 2 influenza A virus subtypes is a promising target for vaccine elicitation of broad cross-group protection against divergent strains. We used structure-guided protein engineering employing multiple protein stabilization methods simultaneously to develop group 2 HA stem-based candidate influenza A virus immunogens displayed as trimers on self-assembling nanoparticles. Characterization of antigenicity, thermostability, and particle formation confirmed structural integrity. Group 2 HA stem antigen designs were identified that, when displayed on ferritin nanoparticles, activated B cells expressing inferred unmutated common ancestor (UCA) versions of human antibody lineages associated with cross-group-reactive, broadly neutralizing antibodies (bNAbs). Immunization of mice led to protection against a lethal homosubtypic influenza virus challenge. These candidate vaccines are now being manufactured for clinical evaluation.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/immunology , B-Lymphocytes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antigens, Viral/genetics , Cross Reactions , Drug Carriers/metabolism , Ferritins/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunity, Heterologous , Influenza Vaccines/genetics , Influenza Vaccines/isolation & purification , Mice , Protein Multimerization , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/isolation & purification
15.
Science ; 365(6452): 505-509, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31371616

ABSTRACT

Technologies that define the atomic-level structure of neutralization-sensitive epitopes on viral surface proteins are transforming vaccinology and guiding new vaccine development approaches. Previously, iterative rounds of protein engineering were performed to preserve the prefusion conformation of the respiratory syncytial virus (RSV) fusion (F) glycoprotein, resulting in a stabilized subunit vaccine candidate (DS-Cav1), which showed promising results in mice and macaques. Here, phase I human immunogenicity data reveal a more than 10-fold boost in neutralizing activity in serum from antibodies targeting prefusion-specific surfaces of RSV F. These findings represent a clinical proof of concept for structure-based vaccine design, suggest that development of a successful RSV vaccine will be feasible, and portend an era of precision vaccinology.


Subject(s)
Immunogenicity, Vaccine , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Epitope Mapping , Humans , Middle Aged , Young Adult
16.
Front Immunol ; 9: 1861, 2018.
Article in English | MEDLINE | ID: mdl-30154789

ABSTRACT

Tissue-resident memory T (TRM) cells provide first-line defense against invading pathogens encountered at barrier sites. In the lungs, TRM cells protect against respiratory infections, but wane more quickly than TRM cells in other tissues. This lack of a sustained TRM population in the lung parenchyma explains, at least in part, why infections with some pathogens, such as influenza virus and respiratory syncytial virus (RSV), recur throughout life. Intranasal (IN) vaccination with a murine cytomegalovirus (MCMV) vector expressing the M protein of RSV (MCMV-M) has been shown to elicit robust populations of CD8+ TRM cells that accumulate over time and mediate early viral clearance. To extend this finding, we compared the inflationary CD8+ T cell population elicited by MCMV-M vaccination with a conventional CD8+ T cell population elicited by an MCMV vector expressing the M2 protein of RSV (MCMV-M2). Vaccination with MCMV-M2 induced a population of M2-specific CD8+ TRM cells that waned rapidly, akin to the M2-specific CD8+ TRM cell population elicited by infection with RSV. In contrast to the natural immunodominance profile, however, coadministration of MCMV-M and MCMV-M2 did not suppress the M-specific CD8+ T cell response, suggesting that progressive expansion was driven by continuous antigen presentation, irrespective of the competitive or regulatory effects of M2-specific CD8+ T cells. Moreover, effective viral clearance mediated by M-specific CD8+ TRM cells was not affected by the coinduction of M2-specific CD8+ T cells. These data show that memory inflation is required for the maintenance of CD8+ TRM cells in the lungs after IN vaccination with MCMV.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Immunologic Memory , Lung/immunology , Muromegalovirus/immunology , Administration, Intranasal , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Epitopes, T-Lymphocyte/immunology , Female , Herpesviridae Infections/metabolism , Herpesviridae Infections/pathology , Immunization , Lung/metabolism , Lung/pathology , Mice , Organ Specificity , T-Cell Antigen Receptor Specificity
17.
Nat Commun ; 8(1): 1877, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29187732

ABSTRACT

A licensed vaccine for respiratory syncytial virus (RSV) is unavailable, and passive prophylaxis with the antibody palivizumab is restricted to high-risk infants. Recently isolated antibodies 5C4 and D25 are substantially more potent than palivizumab, and a derivative of D25 is in clinical trials. Here we show that unlike D25, 5C4 preferentially neutralizes subtype A viruses. The crystal structure of 5C4 bound to the RSV fusion (F) protein reveals that the overall binding mode of 5C4 is similar to that of D25, but their angles of approach are substantially different. Mutagenesis and virological studies demonstrate that RSV F residue 201 is largely responsible for the subtype specificity of 5C4. These results improve our understanding of subtype-specific immunity and the neutralization breadth requirements of next-generation antibodies, and thereby contribute to the design of broadly protective RSV vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Antibody Specificity , Antiviral Agents/therapeutic use , Crystallography, X-Ray , HEK293 Cells , Humans , Palivizumab/therapeutic use , Protein Binding , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/therapeutic use , Surface Plasmon Resonance
18.
Sci Immunol ; 1(6)2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28111638

ABSTRACT

Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in young children and the elderly. There are currently no licensed RSV vaccines, and passive prophylaxis with the monoclonal antibody palivizumab is restricted to high-risk infants in part due to its modest efficacy. Although it is widely agreed that an effective RSV vaccine will require the induction of a potent neutralizing antibody response against the RSV fusion (F) glycoprotein, little is known about the specificities and functional activities of RSV F-specific antibodies induced by natural infection. Here, we have comprehensively profiled the human antibody response to RSV F by isolating and characterizing 364 RSV F-specific monoclonal antibodies from the memory B cells of three healthy adult donors. In all donors, the antibody response to RSV F is comprised of a broad diversity of clones that target several antigenic sites. Nearly half of the most potent antibodies target a previously undefined site of vulnerability near the apex of the prefusion conformation of RSV F (preF), providing strong support for the development of RSV vaccine candidates that preserve the membrane-distal hemisphere of the preF protein. Additionally, the antibodies targeting this new site display convergent sequence features, thus providing a future means to rapidly detect the presence of these antibodies in human vaccine samples. Many of the antibodies that bind preF-specific surfaces are over 100 times more potent than palivizumab, and several cross-neutralize human metapneumovirus (HMPV). Taken together, the results have implications for the design and evaluation of RSV vaccine candidates and offer new options for passive prophylaxis.

19.
Nat Commun ; 7: 13916, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000669

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats.


Subject(s)
Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccines, Attenuated/immunology , Animals , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Drug Stability , Humans , Mice, Inbred BALB C , Protein Engineering , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/physiology , Sigmodontinae , Temperature , Vaccines, Attenuated/genetics , Vero Cells , Viral Proteins/genetics , Viral Proteins/immunology
20.
Sci Transl Med ; 7(309): 309ra162, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26468324

ABSTRACT

Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F. We determined what fraction of neutralizing (NT) activity in human sera is dependent on antibodies specific for antigenic site Ø or other antigenic sites on F in healthy subjects from ages 7 to 93 years. Adsorption of individual sera with stabilized pre-F protein removed >90% of NT activity and depleted binding antibodies to both F conformations. In contrast, adsorption with post-F removed ~30% of NT activity, and binding antibodies to pre-F were retained. These findings were consistent across all age groups. Protein competition neutralization assays with pre-F mutants in which sites Ø or II were altered to knock out binding of antibodies to the corresponding sites showed that these sites accounted for ~35 and <10% of NT activity, respectively. Binding competition assays with monoclonal antibodies (mAbs) indicated that the amount of site Ø-specific antibodies correlated with NT activity, whereas the magnitude of binding competed by site II mAbs did not correlate with neutralization. Our results indicate that RSV NT activity in human sera is primarily derived from pre-F-specific antibodies, and therefore, inducing or boosting NT activity by vaccination will be facilitated by using pre-F antigens that preserve site Ø.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Child , Humans , Middle Aged , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/chemistry , Viral Fusion Proteins/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL