ABSTRACT
The distinct molecular states - single molecule, assembly, and aggregate - of two ionic macromolecules, TPPE-APOSS and TPE-APOSS, are easily distinguishable through their tunable fluorescence emission wavelengths, which reflect variations in intermolecular distances. Both ionic macromolecules contain aggregation-induced emission (AIE) active moieties whose emission wavelengths are directly correlated to their mutual distances in solution: far away from each other as individual molecules, maintaining a tunable and relatively long distance in electrostatic interactions-controlled blackberry-type assemblies (microphase separation), or approaching van der Waals close distance in aggregates (macrophase separation). Furthermore, within the blackberry assemblies, the emission wavelength decreases monotonically with increasing assembly size, indicative of shorter intermolecular distances at nanoscale. The emission changes of TPPE-APOSS blackberry assemblies can even be visually distinguishable by eyes when their sizes and intermolecular distances are tuned. Molecular dynamics simulations further revealed that macromolecules are confined in various conformations by controllable intermolecular distances within the blackberry structure, thereby resulting in fluorescence emission with tunable wavelength.
ABSTRACT
Coacervation has emerged as a prevalent mechanism to compartmentalize biomolecules in living cells. Synthetic coacervates help in understanding the assembly process and mimic the functions of biological coacervates as simplified artificial systems. Though the molecular mechanism and mesoscopic properties of coacervates formed from charged coacervates have been well investigated, the details of the assembly and stabilization of nonionic coacervates remain largely unknown. Here, we describe a library of coacervate-forming polyesteramides and show that the water-tertiary amide bridging hydrogen bonds and hydrophobic interactions stabilize these nonionic, single-component coacervates. Analogous to intracellular biological coacervates, these coacervates exhibit "liquid-like" features with low viscosity and low interfacial energy, and form coacervates with as few as five repeating units. By controlling the temperature and engineering the molar ratio between hydrophobic interaction sites and bridging hydrogen bonding sites, we demonstrate the tuneability of the viscosity and interfacial tension of polyesteramide-based coacervates. Taking advantage of the differences in the mesoscopic properties of these nonionic coacervates, we engineered multiphasic coacervates with core-shell architectures similar to those of intracellular biological coacervates, such as nucleoli and stress granule-p-body complexes. The multiphasic structures produced from these synthetic nonionic polyesteramide coacervates may serve as a valuable tool for investigating physicochemical principles deployed by living cells to spatiotemporally control cargo partitioning, biochemical reaction rates, and interorganellar signal transport.
Subject(s)
Water , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Temperature , Water/chemistryABSTRACT
In recent decades, advances in the syntheses of mechanically interlocked macromolecules, such as catenanes, have led to much greater interest in the applications of these complexes, from molecular motors and actuators to nanoscale computational memory and nanoswitches. Much remains to be understood, however, regarding how catenated ring compounds behave as a result of the effects of different solvents as well as the effects of solvent/solvent interfaces. In this work, we have investigated, using molecular dynamics simulations, the effects of solvation of poly(ethylene oxide) chains of different topologiesâlinear, ring, and [2]catenaneâin two solvents both considered favorable toward PEO (water, toluene) and at the water/toluene interface. Compared to ring and [2]catenane molecules, the linear PEO chain showed the largest increase in size at the water/toluene interface compared to bulk water or bulk toluene. Perhaps surprisingly, observations indicate that the tendency of all three topologies to extend at the water/toluene interface may have more to do with screening the interaction between the two solvents than with optimizing specific solvent-polymer contacts.
ABSTRACT
Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity.
Subject(s)
Bioprinting , Polyesters , Bioprinting/methods , Rheology , Tissue Engineering , Printing, Three-Dimensional , Polymers , Solvents , Tissue Scaffolds/chemistryABSTRACT
Natural gas reservoirs usually contain considerable amounts of nitrogen (N2). Methane (CH4) as the main component in natural gas must be purified before transferring to the pipeline or storing as liquified natural gas (LNG). Currently, energy-intensive cryogenic distillation is the only industrial approach for N2 rejection in natural gas. The adsorption process based on a N2-selective adsorbent can minimize the separation cost. However, the search for an adsorbent that can selectively reject N2 in natural gas has lasted for decades. Here, we report a microporous zeolite called NaZSM-25 capable of adsorbing N2 over CH4 with an exceptional selectivity of 47 at room temperature that outperforms all previously known N2-selective adsorbents. At 295 K and 100 kPa, the N2 and CH4 uptakes on NaZSM-25 were 0.25 and 0.005 mmol g-1, respectively. CH4 showed negligible external surface adsorption in the whole temperature range of 273-323 K. Theoretical studies through replica exchanged Monte Carlo, molecular dynamics, and ab initio density functional theory (DFT) proved the diffusion limitation of CH4 as a result of 8-membered ring (8MR) pore opening deformation by Na+ cation. The DFT results showed the diffusion energy barriers of 63 and 96 kJ mol-1 for N2 and CH4, respectively, when passing an 8MR occupied with a Na+. NaZSM-25 is a promising adsorbent to be utilized in a pressure swing adsorption process at room temperature to minimize the energy consumption in N2 rejection units.
ABSTRACT
Nitrogen (N2) rejection from methane (CH4) is the most challenging step in natural gas processing because of the close similarity of their physical-chemical properties. For decades, efforts to find a functioning material that can selectively discriminate N2 had little outcome. Here, we report a molecular trapdoor zeolite K-ZSM-25 that has the largest unit cell among all zeolites, with the ability to capture N2 in favor of CH4 with a selectivity as high as 34. This zeolite was found to show a temperature-regulated gas adsorption wherein gas molecules' accessibility to the internal pores of the crystal is determined by the effect of the gas-cation interaction on the thermal oscillation of the "door-keeping" cation. N2 and CH4 molecules were differentiated by different admission-trigger temperatures. A mild working temperature range of 240-300 K was determined wherein N2 gas molecules were able to access the internal pores of K-ZSM-25 while CH4 was rejected. As confirmed by experimental, molecular dynamic, and ab initio density functional theory studies, the outstanding N2/CH4 selectivity is achieved within a specific temperature range where the thermal oscillation of door-blocking K+ provides enough space only for the relatively smaller molecule (N2) to diffuse into and through the zeolite supercages. Such temperature-regulated adsorption of the K-ZSM-25 trapdoor zeolite opens up a new approach for rejecting N2 from CH4 in the gas industry without deploying energy-intensive cryogenic distillation around 100 K.
ABSTRACT
Separation of nitrogen (N2) and methane (CH4) is one of the most challenging and energy-intensive processes in the natural gas industry, due to their close physico-chemical properties. The quest for an effective N2-selective adsorbent has long been the focus of research; however, the results have been sparse. In this work, a first-principle study has been used to construct and investigate Li-doped polycyclic aromatic hydrocarbons (PAHs) for N2 rejection in natural gas purification. We doped lithium on a series of linear/nonlinear PAHs consisting of two to six benzene rings. The adsorption affinity of the Li-doped organic molecular systems toward N2 and CH4 was evaluated by calculating the interaction energy using density functional theory. From the gas adsorption selectivities for different Li-doped PAHs, Li-doped phenanthrene and chrysene showed the highest N2 over CH4 equilibrium selectivities, with values of 119.7 and 80.8, respectively. It was found that the Li atom enabled the π bond of the aromatic substrate to interfere with the N2 lowest unoccupied molecular orbital, resulting in strong physisorption of N2. These results indicate the high potential of Li-doped phenanthrene and chrysene for N2 removal from natural gas.
ABSTRACT
This work presents a molecular dynamics simulation study on the interfacial characterization of graphene/epoxy nanocomposites. In polymeric nanocomposites, the thermo-mechanical properties of a system strongly depend on the characteristics of the interphase region between the matrix and the inclusions. The first step in the characterization of this interphase is to distinguish its border limit (i.e., the interphase thickness). Here, we present a methodology to systematically quantify the interphase thickness based on analyzing the variation of the local mass density profile. To this end, three functions (average accumulated mass density, accumulated standard deviation (ASD) and its first derivative) are successively applied on the local mass density profile. Using this procedure, the interphase limit can be easily detected regardless of the oscillatory nature of the local mass density. The effect of the epoxy crosslinking density and number of graphene layers on the interphase thickness is then investigated, and the results are analyzed by studying the interaction energies, polymer dynamics and distribution quality of reacted and unreacted components, as well as conformational changes of the polymer chains in the interphase region. The results reveal that the crosslinking density is the most influential parameter on the interphase thickness: the higher the crosslinking degree, the thicker the interphase region. To a lower extent, the interaction energy has also an effect on the interphase thickness since there is an inverse relationship between the interaction energy and the crosslinking density in our case study. Overall, the reported findings highlight useful insights into the detection and properties of the interphase region in thermoset composites.
ABSTRACT
Polymers have a wide range of applications depending on their composition, size, and architecture. Varying any of these three characteristics can greatly impact the resulting chemical, physical, and mechanical properties. While many techniques are available to determine polymer composition and size, determining the exact polymer architecture is more challenging. Herein, tandem mass spectrometry (MS/MS) and ion mobility mass spectrometry (IM-MS) methods are utilized to derive crucial architectural information about dithiol-yne comb polymers. Based on their unique fragmentation products and IM drift times, dithiol-yne oligomers with distinct architectures were successfully differentiated and characterized. Additionally, experimental collision cross-sections (Ω) derived via IM-MS were compared to theoretically extracted Ω values from molecular dynamics simulated structures to deduce the architectural motif of these comb oligomers. Overall, this work demonstrates the benefits of combining various mass spectrometry techniques in order to gain a complete understanding of a complex polymer mixture.
ABSTRACT
Froth flotation is the most versatile process in mineral beneficiation, extensively used to concentrate a wide range of minerals. This process comprises mixtures of more or less liberated minerals, water, air, and various chemical reagents, involving a series of intermingled multiphase physical and chemical phenomena in the aqueous environment. Today's main challenge facing the froth flotation process is to gain atomic-level insights into the properties of its inherent phenomena governing the process performance. While it is often challenging to determine these phenomena via trial-and-error experimentations, molecular modeling approaches not only elicit a deeper understanding of froth flotation but can also assist experimental studies in saving time and budget. Thanks to the rapid development of computer science and advances in high-performance computing (HPC) infrastructures, theoretical/computational chemistry has now matured enough to successfully and gainfully apply to tackle the challenges of complex systems. In mineral processing, however, advanced applications of computational chemistry are increasingly gaining ground and demonstrating merit in addressing these challenges. Accordingly, this contribution aims to encourage mineral scientists, especially those interested in rational reagent design, to become familiarized with the necessary concepts of molecular modeling and to apply similar strategies when studying and tailoring properties at the molecular level. This review also strives to deliver the state-of-the-art integration and application of molecular modeling in froth flotation studies to assist either active researchers in this field to disclose new directions for future research or newcomers to the field to initiate innovative works.
ABSTRACT
Gas solubility can go beyond classical bulk-liquid Henry's law saturation under the nanoconfinement of a liquid phase. This concept establishes the foundation of the current study for developing a novel catalytic system for transformation of carbon dioxide to cyclic carbonates at mild conditions with major emphasis on application for CO2 capture and utilization. A series of mesoporous silica-based supports of various pore sizes and shapes grafted with a quaternary ammonium salt is synthesized and characterized. CO2 sorption in styrene oxide, either in bulk or nanoconfined state, as well as catalytic reactivity for CO2 transformation into styrene carbonate, are experimentally evaluated. The family of mesoporous catalysts with aligned cylindrical pores (MCM-41 and SBA-15) with pore sizes ranging from 3.5 to 9 nm exhibit enhanced sorption of CO2 in nanoconfined styrene oxide with maximum sorption capacity taking place in MCM-41 with the smallest pore size. The catalysts with interconnected cylindrical pores (KIT-6) with pore sizes ranging from 4.5 to 8.7 nm showed CO2 solubilities almost equal to the bulk solubility of styrene oxide. Monte Carlo simulations revealed that the oversolubility in styrene oxide confined complex is directly related to the density of adsorbed solvent in the nanopore, which is less than its bulk density. Catalytic reactivities correlate with CO2 sorption enhancement, showing higher turnover frequencies for catalysts having higher CO2 sorption capacity. The turnover frequency is increased by a factor of 7.5 for grafted MCM-41 with the smallest pore size with nanoconfined styrene oxide in comparison to the homogeneous reaction implemented in bulk.