Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946588

ABSTRACT

FR235222 is a natural tetra-cyclopeptide with a strong inhibition effect on histone deacetylases, effective on mammalian cells as well as on intracellular apicomplexan parasites, such as Toxoplasma gondii, in the tachyzoite and bradyzoite stages. This molecule is characterized by two parts: the zinc-binding group, responsible for the binding to the histone deacetylase, and the cyclic tetrapeptide moiety, which plays a crucial role in cell permeability. Recently, we have shown that the cyclic tetrapeptide coupled with a fluorescent diethyl-amino-coumarin was able to maintain properties of cellular penetration on human cells. Here, we show that this property can be extended to the crossing of the Toxoplasma gondii cystic cell wall and the cell membrane of the parasite in its bradyzoite form, while maintaining a high efficacy as a histone deacetylase inhibitor. The investigation by molecular modeling allows a better understanding of the penetration mechanism.


Subject(s)
Coumarins/pharmacology , Fluorescent Dyes/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Peptides, Cyclic/pharmacology , Coumarins/chemistry , Fluorescent Dyes/chemistry , Histone Deacetylase Inhibitors/chemistry , Models, Molecular , Peptides, Cyclic/chemistry , Toxoplasma/cytology , Toxoplasma/enzymology
2.
Eur J Med Chem ; 46(5): 1935-41, 2011 May.
Article in English | MEDLINE | ID: mdl-21397997

ABSTRACT

In the study of previously reported modulators of CFTR chloride channels that are cyclic methylglyoxal (MG) diadducts (CMGD) to aromatic α-aminoazaheterocycles, we optimized a new expeditious one pot route for preparing in water novel aromatic polycyclic azaheterocycles and described 5-pyrimidinols antioxidants through the formation of 2-oxoaldehyde diadducts to aromatic α-aminoazaheterocycles, amidines, guanidines and thiourea. In regard to the importance as biomarkers of diabetic complications of the 5-pyrimidinols "argpyrimidines" formed in proteins from MG and arginine residues, we demonstrated that argpyrimidines are slowly formed under physiological conditions from CMGD to arginine derivatives according to the synthesis route described. Among the 5-pyrimidinol derivatives prepared, two polycyclic derivatives appeared to inhibit strongly the activity of CFTR channels in wt-CHO cells.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Drug Discovery , Ornithine/analogs & derivatives , Pyrimidines/pharmacology , Pyruvaldehyde/chemistry , Animals , CHO Cells , Chemistry, Physical , Cricetinae , Cricetulus , Molecular Conformation , Ornithine/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyruvaldehyde/analogs & derivatives , Stereoisomerism , Structure-Activity Relationship
3.
J Pharmacol Exp Ther ; 322(3): 1023-35, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17578899

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) represents the main Cl(-) channel in the apical membrane of epithelial cells for cAMP-dependent Cl(-) secretion. Here we report on the synthesis and screening of a small library of nontoxic alpha-aminoazaheterocycle-methylglyoxal adducts, inhibitors of wild-type (WT) CFTR and G551D-, G1349D-, and F508del-CFTR Cl(-) channels. In whole-cell patch-clamp experiments of Chinese hamster ovary (CHO) cells expressing WT-CFTR, we recorded rapid and reversible inhibition of forskolin-activated CFTR currents in the presence of the adducts 5a and 8a,b at 10 pM concentrations. Using iodide efflux experiments, we compared concentration-dependent inhibition of CFTR with glibenclamide (IC(50) = 14.7 microM), 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl-)methylene]-2-thioxo-4-thiazolidinone (CFTR(inh)-172) (IC(50) = 1.2 microM), and alpha-aminoazaheterocycle-methylglyoxal adducts and identified compounds 5a (IC(50) = 71 pM), 8a,b (IC(50) = 2.5 nM), and 7a,b (IC(50) = 3.4 nM) as the most potent inhibitors of WT-CFTR channels. Similar ranges of inhibition were also found when these compounds were evaluated on CFTR channels with the cystic fibrosis mutations F508del (in temperature-corrected human airway epithelial F508del/F508del CF15 cells)-, G551D-, and G1349D-CFTR (expressed in CHO and COS-7 cells). No effect of compound 5a was detected on the volume-regulated or calcium-regulated iodide efflux. Picomolar inhibition of WT-CFTR with adduct 5a was also found using a 6-methoxy-N-(3-sulfopropyl)-quinolinium fluorescent probe applied to the human tracheobronchial epithelial cell line 16HBE14o-. Finally, we found comparable inhibition by 5a or by CFTR(inh)-172 of forskolin-dependent short-circuit currents in mouse colon. To the best of our knowledge, these new nontoxic alpha-aminoazaheterocycle-methylglyoxal adducts represent the most potent compounds reported to inhibit CFTR chloride channels.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Heterocyclic Compounds/pharmacology , Pyruvaldehyde/pharmacology , Animals , CHO Cells , Chloride Channels/antagonists & inhibitors , Cricetinae , Cricetulus , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Electrophysiology , Epithelial Cells , Heterocyclic Compounds/chemistry , Humans , Inhibitory Concentration 50 , Mutation , Patch-Clamp Techniques , Pyruvaldehyde/chemistry , Respiratory Mucosa/cytology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL