Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Publication year range
1.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35662412

ABSTRACT

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Subject(s)
Antibodies, Monoclonal , COVID-19 Vaccines/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Viral , COVID-19 , COVID-19 Vaccines/administration & dosage , Epitopes , Humans , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
2.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35772405

ABSTRACT

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2/genetics , South Africa
3.
Cell ; 184(25): 6052-6066.e18, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34852239

ABSTRACT

The human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design.


Subject(s)
Antibodies, Neutralizing , Dengue Virus , Dengue , Viral Envelope Proteins , Zika Virus Infection , Zika Virus , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Cross Reactions/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/physiology , Drosophila melanogaster , HEK293 Cells , Humans , Protein Binding , Protein Conformation , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Zika Virus/immunology , Zika Virus/physiology , Zika Virus Infection/immunology , Zika Virus Infection/virology
4.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33730597

ABSTRACT

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Subject(s)
COVID-19 Vaccines/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Chlorocebus aethiops , Clinical Trials as Topic , HEK293 Cells , Humans , Immunization, Passive , Models, Molecular , Mutation/genetics , Neutralization Tests , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Vero Cells , COVID-19 Serotherapy
5.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33852911

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Cell Line , Humans , Immune Evasion , Immunization, Passive , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines/immunology , COVID-19 Serotherapy
6.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34735795

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult , mRNA Vaccines
7.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33756110

ABSTRACT

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Binding Sites, Antibody , CHO Cells , Chlorocebus aethiops , Cricetulus , Epitopes , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Models, Molecular , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2/immunology , Vero Cells
8.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33743891

ABSTRACT

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CHO Cells , COVID-19/epidemiology , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Pandemics , Protein Binding , Structure-Activity Relationship , Vero Cells
10.
Nat Immunol ; 20(10): 1291-1298, 2019 10.
Article in English | MEDLINE | ID: mdl-31477918

ABSTRACT

Infections with dengue virus (DENV) and Zika virus (ZIKV) can induce cross-reactive antibody responses. Two immunodominant epitopes-one to precursor membrane protein and one to the fusion loop epitope on envelope (E) protein-are recognized by cross-reactive antibodies1-3 that are not only poorly neutralizing, but can also promote increased viral replication and disease severity via Fcγ receptor-mediated infection of myeloid cells-a process termed antibody-dependent enhancement (ADE)1,4,5. ADE is a significant concern for both ZIKV and DENV vaccines as the induction of poorly neutralizing cross-reactive antibodies may prime an individual for ADE on natural infection. In this report, we describe the design and production of covalently stabilized ZIKV E dimers, which lack precursor membrane protein and do not expose the immunodominant fusion loop epitope. Immunization of mice with ZIKV E dimers induces dimer-specific antibodies, which protect against ZIKV challenge during pregnancy. Importantly, the ZIKV E-dimer-induced response does not cross-react with DENV or induce ADE of DENV infection.


Subject(s)
Dengue Virus/physiology , Dengue/immunology , Viral Vaccines/immunology , Zika Virus Infection/immunology , Zika Virus/physiology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Cross Reactions , Dimerization , Epitopes/genetics , Female , Genetic Engineering , HEK293 Cells , Humans , Immunodominant Epitopes/genetics , Mice , Mice, Inbred BALB C , Receptors, IgG/metabolism , Vaccination , Viral Envelope Proteins/genetics , Viral Vaccines/genetics , Virus Replication
11.
Nat Immunol ; 19(11): 1189-1198, 2018 11.
Article in English | MEDLINE | ID: mdl-30333606

ABSTRACT

Arthropod-borne flaviviruses are important human pathogens that cause a diverse range of clinical conditions, including severe hemorrhagic syndromes, neurological complications and congenital malformations. Consequently, there is an urgent need to develop safe and effective vaccines, a process requiring better understanding of the immunological mechanisms involved during infection. Decades of research suggest a paradoxical role of the immune response against flaviviruses: although the immune response is crucial for the control, clearance and prevention of infection, poor clinical outcomes are commonly associated with virus-specific immunity and immunopathogenesis. This relationship is further complicated by the high homology among viruses and the implication of cross-reactive immune responses in protection and pathogenesis. This Review examines the dual role of the adaptive immune response against flaviviruses, particularly emphasizing the most recent findings regarding cross-reactive T cell and antibody responses, and the effects that these concepts have on vaccine-development endeavors.


Subject(s)
Adaptive Immunity/immunology , Flavivirus Infections/immunology , Flavivirus/immunology , Animals , Antibodies, Viral , Humans
12.
Nat Immunol ; 19(11): 1248-1256, 2018 11.
Article in English | MEDLINE | ID: mdl-30323338

ABSTRACT

Dengue virus is a major pathogen, and severe infections can lead to life-threatening dengue hemorrhagic fever. Dengue virus exists as four serotypes, and dengue hemorrhagic fever is often associated with secondary heterologous infections. Antibody-dependent enhancement (ADE) may drive higher viral loads in these secondary infections and is purported to result from antibodies that recognize dengue virus but fail to fully neutralize it. Here we characterize two antibodies, 2C8 and 3H5, that bind to the envelope protein. Antibody 3H5 is highly unusual as it not only is potently neutralizing but also promotes little if any ADE, whereas antibody 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immunocomplexes of 3H5 and dengue virus do not efficiently interact with Fcγ receptors, which we propose is due to the binding mode of 3H5 and constitutes the primary mechanism of how ADE is avoided.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Dengue Virus/immunology , Humans
13.
Nat Immunol ; 18(11): 1261-1269, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28945244

ABSTRACT

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Dengue Virus/immunology , Epitopes/immunology , Viral Envelope Proteins/immunology , Zika Virus Infection/immunology , Animals , Brain/immunology , Brain/virology , Chlorocebus aethiops , Cross Reactions/immunology , Dengue Virus/classification , Dengue Virus/metabolism , Female , Fetus/immunology , Fetus/virology , Host-Pathogen Interactions/immunology , Humans , Male , Mice , Neutralization Tests , Pregnancy , Protein Multimerization/immunology , Testis/immunology , Testis/virology , Vero Cells , Viral Envelope Proteins/chemistry , Viral Load/immunology , Zika Virus/immunology , Zika Virus/physiology , Zika Virus Infection/virology
14.
Nat Immunol ; 18(11): 1228-1237, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28945243

ABSTRACT

Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) ß-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8+ T cell populations specific for variants of the nonstructural protein epitope NS3133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3133-DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2+ TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second ß-chain complementarity-determining region (CDR2ß). Extensive mutagenesis studies of three distinct TRBV11-2+ TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2ß loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Dengue Virus/immunology , Germ-Line Mutation/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Dengue/genetics , Dengue/immunology , Dengue/virology , Dengue Virus/classification , Dengue Virus/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/chemistry , HLA-A Antigens/genetics , HLA-A Antigens/immunology , Humans , Models, Molecular , Protein Structure, Tertiary , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serotyping , Surface Plasmon Resonance
15.
Nat Immunol ; 17(9): 1102-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27339099

ABSTRACT

Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to ZIKV. Here we investigated the serological cross-reaction between the two viruses. Plasma immune to DENV showed substantial cross-reaction to ZIKV and was able to drive antibody-dependent enhancement (ADE) of ZIKV infection. Using a panel of human monoclonal antibodies (mAbs) to DENV, we showed that most antibodies that reacted to DENV envelope protein also reacted to ZIKV. Antibodies to linear epitopes, including the immunodominant fusion-loop epitope, were able to bind ZIKV but were unable to neutralize the virus and instead promoted ADE. Our data indicate that immunity to DENV might drive greater ZIKV replication and have clear implications for disease pathogenesis and future vaccine programs for ZIKV and DENV.


Subject(s)
Antibody-Dependent Enhancement , Cross Reactions , Dengue Virus/physiology , Dengue/immunology , Zika Virus Infection/immunology , Zika Virus/physiology , Adolescent , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cells, Cultured , Child , Child, Preschool , Dengue/epidemiology , Epitope Mapping , Female , Guillain-Barre Syndrome/epidemiology , Humans , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Male , Microcephaly/epidemiology , Protein Binding , South America/epidemiology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virus Replication , Zika Virus Infection/epidemiology
16.
Nat Immunol ; 16(2): 170-177, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25501631

ABSTRACT

Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Dengue Virus/immunology , Dengue/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/blood , Biological Assay , Cell Line , Dengue/blood , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Viral Envelope Proteins/metabolism
17.
J Virol ; 97(11): e0096323, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37846984

ABSTRACT

IMPORTANCE: Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body. This heterologous prime-boost immunization induced elevated levels of virus-specific antibodies and helped to prevent dengue virus infection in a high proportion of vaccinated macaques. In macaques that remained susceptible to dengue virus, distinct mechanisms were found to account for the immunization failures, providing a better understanding of vaccine actions. Additional studies in humans in the future may help to establish whether this combination approach represents a more effective means of preventing dengue by vaccination.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Animals , Humans , Antibodies, Viral , Dengue Vaccines/administration & dosage , Macaca fascicularis , Immunization, Secondary , Vaccines, Virus-Like Particle/administration & dosage
18.
J Gen Virol ; 104(7)2023 07.
Article in English | MEDLINE | ID: mdl-37432877

ABSTRACT

The 2',5'- oligoadenylate synthetase (OAS) - ribonuclease L (RNAseL) - phosphodiesterase 12 (PDE12) pathway is an essential interferon-induced effector mechanism against RNA virus infection. Inhibition of PDE12 leads to selective amplification of RNAseL activity in infected cells. We aimed to investigate PDE12 as a potential pan-RNA virus antiviral drug target and develop PDE12 inhibitors that elicit antiviral activity against a range of viruses. A library of 18 000 small molecules was screened for PDE12 inhibitor activity using a fluorescent probe specific for PDE12. The lead compounds (CO-17 or CO-63) were tested in cell-based antiviral assays using encephalomyocarditis virus (EMCV), hepatitis C virus (HCV), dengue virus (DENV), West Nile virus (WNV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro. Cross reactivity of PDE12 inhibitors with other PDEs and in vivo toxicity were measured. In EMCV assays, CO-17 potentiated the effect of IFNα by 3 log10. The compounds were selective for PDE12 when tested against a panel of other PDEs and non-toxic at up to 42 mg kg-1 in rats in vivo. Thus, we have identified PDE12 inhibitors (CO-17 and CO-63), and established the principle that inhibitors of PDE12 have antiviral properties. Early studies suggest these PDE12 inhibitors are well tolerated at the therapeutic range, and reduce viral load in studies of DENV, HCV, WNV and SARS-CoV-2 in human cells and WNV in a mouse model.


Subject(s)
COVID-19 , RNA Viruses , Humans , Mice , Animals , Rats , Antiviral Agents/pharmacology , SARS-CoV-2 , Interferon-alpha , Encephalomyocarditis virus , Phosphoric Diester Hydrolases
19.
Lancet ; 399(10324): 521-529, 2022 02 05.
Article in English | MEDLINE | ID: mdl-35074136

ABSTRACT

INTRODUCTION: The inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac, Sinovac) has been widely used in a two-dose schedule. We assessed whether a third dose of the homologous or a different vaccine could boost immune responses. METHODS: RHH-001 is a phase 4, participant masked, two centre, safety and immunogenicity study of Brazilian adults (18 years and older) in São Paulo or Salvador who had received two doses of CoronaVac 6 months previously. The third heterologous dose was of either a recombinant adenoviral vectored vaccine (Ad26.COV2-S, Janssen), an mRNA vaccine (BNT162b2, Pfizer-BioNTech), or a recombinant adenoviral-vectored ChAdOx1 nCoV-19 vaccine (AZD1222, AstraZeneca), compared with a third homologous dose of CoronaVac. Participants were randomly assigned (5:6:5:5) by a RedCAP computer randomisation system stratified by site, age group (18-60 years or 61 years and over), and day of randomisation, with a block size of 42. The primary outcome was non-inferiority of anti-spike IgG antibodies 28 days after the booster dose in the heterologous boost groups compared with homologous regimen, using a non-inferiority margin for the geometric mean ratio (heterologous vs homologous) of 0·67. Secondary outcomes included neutralising antibody titres at day 28, local and systemic reactogenicity profiles, adverse events, and serious adverse events. This study was registered with Registro Brasileiro de Ensaios Clínicos, number RBR-9nn3scw. FINDINGS: Between Aug 16, and Sept 1, 2021, 1240 participants were randomly assigned to one of the four groups, of whom 1239 were vaccinated and 1205 were eligible for inclusion in the primary analysis. Antibody concentrations were low before administration of a booster dose with detectable neutralising antibodies of 20·4% (95% CI 12·8-30·1) in adults aged 18-60 years and 8·9% (4·2-16·2) in adults 61 years or older. From baseline to day 28 after the booster vaccine, all groups had a substantial rise in IgG antibody concentrations: the geometric fold-rise was 77 (95% CI 67-88) for Ad26.COV2-S, 152 (134-173) for BNT162b2, 90 (77-104) for ChAdOx1 nCoV-19, and 12 (11-14) for CoronaVac. All heterologous regimens had anti-spike IgG responses at day 28 that were superior to homologous booster responses: geometric mean ratios (heterologous vs homologous) were 6·7 (95% CI 5·8-7·7) for Ad26.COV2-S, 13·4 (11·6-15·3) for BNT162b2, and 7·0 (6·1-8·1) for ChAdOx1 nCoV-19. All heterologous boost regimens induced high concentrations of pseudovirus neutralising antibodies. At day 28, all groups except for the homologous boost in the older adults reached 100% seropositivity: geometric mean ratios (heterologous vs homologous) were 8·7 (95% CI 5·9-12·9) for Ad26.COV2-S vaccine, 21·5 (14·5-31·9) for BNT162b2, and 10·6 (7·2-15·6) for ChAdOx1 nCoV-19. Live virus neutralising antibodies were also boosted against delta (B.1.617.2) and omicron variants (B.1.1.529). There were five serious adverse events. Three of which were considered possibly related to the vaccine received: one in the BNT162b2 group and two in the Ad26.COV2-S group. All participants recovered and were discharged home. INTERPRETATION: Antibody concentrations were low at 6 months after previous immunisation with two doses of CoronaVac. However, all four vaccines administered as a third dose induced a significant increase in binding and neutralising antibodies, which could improve protection against infection. Heterologous boosting resulted in more robust immune responses than homologous boosting and might enhance protection. FUNDING: Ministry of Health, Brazil.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Brazil , ChAdOx1 nCoV-19 , Female , Humans , Immunization, Secondary , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , Vaccines, Inactivated
20.
J Infect Dis ; 226(8): 1372-1381, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35267040

ABSTRACT

BACKGROUND: The use of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (CoronaVac) against SARS-CoV-2 is implemented worldwide. However, waning immunity and breakthrough infections have been observed. Therefore, we hypothesized that the heterologous booster might improve the protection against the delta and omicron variants. METHODS: A total of 224 individuals who completed the 2-dose CoronaVac for 6 months were included. We studied reactogenicity and immunogenicity after a heterologous booster with the inactivated vaccine (BBIBP), the viral vector vaccine (AZD1222), and the messenger ribonucleic acid (mRNA) vaccine (both BNT162B2 and mRNA-1273). We also determined immunogenicity at 3- and 6-month boosting intervals. RESULTS: The solicited adverse events were mild to moderate and well tolerated. Total receptor binding domain (RBD) immunoglobulin (Ig), anti-RBD IgG, focus reduction neutralization test (FRNT50) against delta and omicron variants, and T-cell response were highest in the mRNA-1273 group followed by the BNT162b2, AZD1222, and BBIBP groups, respectively. We also witnessed a higher total Ig anti-RBD in the long-interval than in the short-interval group. CONCLUSIONS: All 4 booster vaccines significantly increased binding and neutralizing antibodies in individuals immunized with 2 doses of CoronaVac. The present evidence may benefit vaccine strategies to thwart variants of concern, including the omicron variant.


Subject(s)
COVID-19 , Viral Vaccines , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , RNA , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
SELECTION OF CITATIONS
SEARCH DETAIL