Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Healthc Eng ; 2022: 4365855, 2022.
Article in English | MEDLINE | ID: mdl-35449836

ABSTRACT

One of the most prevalent and leading causes of cancer in women is breast cancer. It has now become a frequent health problem, and its prevalence has recently increased. The easiest approach to dealing with breast cancer findings is to recognize them early on. Early detection of breast cancer is facilitated by computer-aided detection and diagnosis (CAD) technologies, which can help people live longer lives. The major goal of this work is to take advantage of recent developments in CAD systems and related methodologies. In 2011, the United States reported that one out of every eight women was diagnosed with cancer. Breast cancer originates as a result of aberrant cell division in the breast, which leads to either benign or malignant cancer formation. As a result, early detection of breast cancer is critical, and with effective treatment, many lives can be saved. This research covers the findings and analyses of multiple machine learning models for identifying breast cancer. The Wisconsin Breast Cancer Diagnostic (WBCD) dataset was used to develop the method. Despite its small size, the dataset provides some interesting data. The information was analyzed and put to use in a number of machine learning models. For prediction, random forest, logistic regression, decision tree, and K-nearest neighbor were utilized. When the results are compared, the logistic regression model is found to offer the best results. Logistic regression achieves 98% accuracy, which is better than the previous method reported.


Subject(s)
Breast Neoplasms , Breast , Breast Neoplasms/diagnosis , Cluster Analysis , Female , Humans , Logistic Models , Machine Learning
2.
J Healthc Eng ; 2021: 1002799, 2021.
Article in English | MEDLINE | ID: mdl-34868509

ABSTRACT

Deep learning has emerged as a promising technique for a variety of elements of infectious disease monitoring and detection, including tuberculosis. We built a deep convolutional neural network (CNN) model to assess the generalizability of the deep learning model using a publicly accessible tuberculosis dataset. This study was able to reliably detect tuberculosis (TB) from chest X-ray images by utilizing image preprocessing, data augmentation, and deep learning classification techniques. Four distinct deep CNNs (Xception, InceptionV3, InceptionResNetV2, and MobileNetV2) were trained, validated, and evaluated for the classification of tuberculosis and nontuberculosis cases using transfer learning from their pretrained starting weights. With an F1-score of 99 percent, InceptionResNetV2 had the highest accuracy. This research is more accurate than earlier published work. Additionally, it outperforms all other models in terms of reliability. The suggested approach, with its state-of-the-art performance, may be helpful for computer-assisted rapid TB detection.


Subject(s)
COVID-19 , Deep Learning , Tuberculosis , Humans , Neural Networks, Computer , Reproducibility of Results , Tuberculosis/diagnostic imaging
3.
J Healthc Eng ; 2021: 5895156, 2021.
Article in English | MEDLINE | ID: mdl-34931137

ABSTRACT

We live in a world where people are suffering from many diseases. Cancer is the most threatening of them all. Among all the variants of cancer, skin cancer is spreading rapidly. It happens because of the abnormal growth of skin cells. The increase in ultraviolet radiation on the Earth's surface is also helping skin cancer spread in every corner of the world. Benign and malignant types are the most common skin cancers people suffer from. People go through expensive and time-consuming treatments to cure skin cancer but yet fail to lower the mortality rate. To reduce the mortality rate, early detection of skin cancer in its incipient phase is helpful. In today's world, deep learning is being used to detect diseases. The convolutional neural network (CNN) helps to find skin cancer through image classification more accurately. This research contains information about many CNN models and a comparison of their working processes for finding the best results. Pretrained models like VGG16, Support Vector Machine (SVM), ResNet50, and self-built models (sequential) are used to analyze the process of CNN models. These models work differently as there are variations in their layer numbers. Depending on their layers and work processes, some models work better than others. An image dataset of benign and malignant data has been taken from Kaggle. In this dataset, there are 6594 images of benign and malignant skin cancer. Using different approaches, we have gained accurate results for VGG16 (93.18%), SVM (83.48%), ResNet50 (84.39%), Sequential_Model_1 (74.24%), Sequential_Model_2 (77.00%), and Sequential_Model_3 (84.09%). This research compares these outcomes based on the model's work process. Our comparison includes model layer numbers, working process, and precision. The VGG16 model has given us the highest accuracy of 93.18%.


Subject(s)
Skin Neoplasms , Ultraviolet Rays , Humans , Neural Networks, Computer , Skin , Skin Neoplasms/diagnosis , Support Vector Machine
4.
J Healthc Eng ; 2021: 3514821, 2021.
Article in English | MEDLINE | ID: mdl-34956569

ABSTRACT

The World Health Organization (WHO) recognized COVID-19 as the cause of a global pandemic in 2019. COVID-19 is caused by SARS-CoV-2, which was identified in China in late December 2019 and is indeed referred to as the severe acute respiratory syndrome coronavirus-2. The whole globe was hit within several months. As millions of individuals around the world are infected with COVID-19, it has become a global health concern. The disease is usually contagious, and those who are infected can quickly pass it on to others with whom they come into contact. As a result, monitoring is an effective way to stop the virus from spreading further. Another disease caused by a virus similar to COVID-19 is pneumonia. The severity of pneumonia can range from minor to life-threatening. This is particularly hazardous for children, people over 65 years of age, and those with health problems or immune systems that are affected. In this paper, we have classified COVID-19 and pneumonia using deep transfer learning. Because there has been extensive research on this subject, the developed method concentrates on boosting precision and employs a transfer learning technique as well as a model that is custom-made. Different pretrained deep convolutional neural network (CNN) models were used to extract deep features. The classification accuracy was used to measure performance to a great extent. According to the findings of this study, deep transfer learning can detect COVID-19 and pneumonia from CXR images. Pretrained customized models such as MobileNetV2 had a 98% accuracy, InceptionV3 had a 96.92% accuracy, EffNet threshold had a 94.95% accuracy, and VGG19 had a 92.82% accuracy. MobileNetV2 has the best accuracy of all of these models.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Child , Humans , Pandemics , Pneumonia/diagnosis , SARS-CoV-2
5.
J Healthc Eng ; 2021: 7633381, 2021.
Article in English | MEDLINE | ID: mdl-34868531

ABSTRACT

Stroke is a medical disorder in which the blood arteries in the brain are ruptured, causing damage to the brain. When the supply of blood and other nutrients to the brain is interrupted, symptoms might develop. According to the World Health Organization (WHO), stroke is the greatest cause of death and disability globally. Early recognition of the various warning signs of a stroke can help reduce the severity of the stroke. Different machine learning (ML) models have been developed to predict the likelihood of a stroke occurring in the brain. This research uses a range of physiological parameters and machine learning algorithms, such as Logistic Regression (LR), Decision Tree (DT) Classification, Random Forest (RF) Classification, and Voting Classifier, to train four different models for reliable prediction. Random Forest was the best performing algorithm for this task with an accuracy of approximately 96 percent. The dataset used in the development of the method was the open-access Stroke Prediction dataset. The accuracy percentage of the models used in this investigation is significantly higher than that of previous studies, indicating that the models used in this investigation are more reliable. Numerous model comparisons have established their robustness, and the scheme can be deduced from the study analysis.


Subject(s)
Stroke , Algorithms , Brain , Humans , Logistic Models , Machine Learning , Stroke/diagnosis
6.
Comput Intell Neurosci ; 2021: 2392395, 2021.
Article in English | MEDLINE | ID: mdl-34970309

ABSTRACT

Brain tumors are the most common and aggressive illness, with a relatively short life expectancy in their most severe form. Thus, treatment planning is an important step in improving patients' quality of life. In general, image methods such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound images are used to assess tumors in the brain, lung, liver, breast, prostate, and so on. X-ray images, in particular, are utilized in this study to diagnose brain tumors. This paper describes the investigation of the convolutional neural network (CNN) to identify brain tumors from X-ray images. It expedites and increases the reliability of the treatment. Because there has been a significant amount of study in this field, the presented model focuses on boosting accuracy while using a transfer learning strategy. Python and Google Colab were utilized to perform this investigation. Deep feature extraction was accomplished with the help of pretrained deep CNN models, VGG19, InceptionV3, and MobileNetV2. The classification accuracy is used to assess the performance of this paper. MobileNetV2 had the accuracy of 92%, InceptionV3 had the accuracy of 91%, and VGG19 had the accuracy of 88%. MobileNetV2 has offered the highest level of accuracy among these networks. These precisions aid in the early identification of tumors before they produce physical adverse effects such as paralysis and other impairments.


Subject(s)
Brain Neoplasms , Quality of Life , Brain , Brain Neoplasms/diagnostic imaging , Humans , Male , Neural Networks, Computer , Reproducibility of Results
7.
Comput Intell Neurosci ; 2021: 3111676, 2021.
Article in English | MEDLINE | ID: mdl-34956345

ABSTRACT

Generation Z is a data-driven generation. Everyone has the entirety of humanity's knowledge in their hands. The technological possibilities are endless. However, we use and misuse this blessing to face swap using deepfake. Deepfake is an emerging subdomain of artificial intelligence technology in which one person's face is overlaid over another person's face, which is very prominent across social media. Machine learning is the main element of deepfakes, and it has allowed deepfake images and videos to be generated considerably faster and at a lower cost. Despite the negative connotations associated with the phrase "deepfakes," the technology is being more widely employed commercially and individually. Although it is relatively new, the latest technological advances make it more and more challenging to detect deepfakes and synthesized images from real ones. An increasing sense of unease has developed around the emergence of deepfake technologies. Our main objective is to detect deepfake images from real ones accurately. In this research, we implemented several methods to detect deepfake images and make a comparative analysis. Our model was trained by datasets from Kaggle, which had 70,000 images from the Flickr dataset and 70,000 images produced by styleGAN. For this comparative study of the use of convolutional neural networks (CNN) to identify genuine and deepfake pictures, we trained eight different CNN models. Three of these models were trained using the DenseNet architecture (DenseNet121, DenseNet169, and DenseNet201); two were trained using the VGGNet architecture (VGG16, VGG19); one was with the ResNet50 architecture, one with the VGGFace, and one with a bespoke CNN architecture. We have also implemented a custom model that incorporates methods like dropout and padding that aid in determining whether or not the other models reflect their objectives. The results were categorized by five evaluation metrics: accuracy, precision, recall, F1-score, and area under the ROC (receiver operating characteristic) curve. Amongst all the models, VGGFace performed the best, with 99% accuracy. Besides, we obtained 97% from the ResNet50, 96% from the DenseNet201, 95% from the DenseNet169, 94% from the VGG19, 92% from the VGG16, 97% from the DenseNet121 model, and 90% from the custom model.


Subject(s)
Artificial Intelligence , Social Media , Humans , Machine Learning , Neural Networks, Computer , ROC Curve
8.
J Healthc Eng ; 2021: 9917919, 2021.
Article in English | MEDLINE | ID: mdl-34336171

ABSTRACT

Alzheimer's disease has been one of the major concerns recently. Around 45 million people are suffering from this disease. Alzheimer's is a degenerative brain disease with an unspecified cause and pathogenesis which primarily affects older people. The main cause of Alzheimer's disease is Dementia, which progressively damages the brain cells. People lost their thinking ability, reading ability, and many more from this disease. A machine learning system can reduce this problem by predicting the disease. The main aim is to recognize Dementia among various patients. This paper represents the result and analysis regarding detecting Dementia from various machine learning models. The Open Access Series of Imaging Studies (OASIS) dataset has been used for the development of the system. The dataset is small, but it has some significant values. The dataset has been analyzed and applied in several machine learning models. Support vector machine, logistic regression, decision tree, and random forest have been used for prediction. First, the system has been run without fine-tuning and then with fine-tuning. Comparing the results, it is found that the support vector machine provides the best results among the models. It has the best accuracy in detecting Dementia among numerous patients. The system is simple and can easily help people by detecting Dementia among them.


Subject(s)
Alzheimer Disease , Aged , Algorithms , Alzheimer Disease/diagnosis , Brain , Humans , Machine Learning , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL