ABSTRACT
C-reactive protein (CRP) has been studied extensively for association with a large number of non-infectious diseases and outcomes. We aimed to evaluate the breadth and validity of associations between CRP and non-infectious, chronic health outcomes and biomarkers. We conducted an umbrella review of systematic reviews and meta-analyses and a systematic review of Mendelian randomization (MR) studies. PubMed, Scopus, and Cochrane Database of Systematic Reviews were systematically searched from inception up to March 2019. Meta-analyses of observational studies and MR studies examining associations between CRP and health outcomes were identified, excluding studies on the diagnostic value of CRP for infections. We found 113 meta-analytic comparisons of observational studies and 196 MR analyses, covering a wide range of outcomes. The overwhelming majority of the meta-analyses of observational studies reported a nominally statistically significant result (95/113, 84.1%); however, the majority of the meta-analyses displayed substantial heterogeneity (47.8%), small study effects (39.8%) or excess significance (41.6%). Only two outcomes, cardiovascular mortality and venous thromboembolism, showed convincing evidence of association with CRP levels. When examining the MR literature, we found MR studies for 53/113 outcomes examined in the observational study meta-analyses but substantial support for a causal association with CRP was not observed for any phenotype. Despite the striking amount of research on CRP, convincing evidence for associations and causal effects is remarkably limited.
Subject(s)
C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Biomarkers/blood , Humans , Mendelian Randomization Analysis , Meta-Analysis as Topic , Observational Studies as Topic , Systematic Reviews as TopicABSTRACT
Background and Purpose- Psychosocial factors can have implications for ischemic stroke risk and recovery. This study investigated the effect of genetically determined risk of depression on these outcomes using the Mendelian randomization (MR) framework. Methods- Genetic instruments for risk of depression were identified in a discovery genome-wide association study of 246 363 cases and 561 190 controls and further replicated in a separate population of 474 574 cases and 1 032 579 controls. Corresponding genetic association estimates for risk of ischemic stroke were taken from 60 341 cases and 454 450 controls, with those for functional outcome 3 months after ischemic stroke taken from an analysis of 6021 patients. Following statistical power calculation, inverse-variance weighted MR was performed to pool estimates across different instruments. The Cochran Q heterogeneity test, weighted median MR, and MR pleiotropy residual sum and outlier were used to explore possible bias relating to inclusion of pleiotropic variants. Results- There was no MR evidence for an effect of genetically determined risk of depression on ischemic stroke risk. Although suffering low statistical power, the main inverse-variance weighted MR analysis was suggestive of a detrimental effect of genetically determined risk of depression on functional outcome after ischemic stroke (odds ratio of poor outcome [modified Rankin Scale, ≥3] per 1-SD increase in genetically determined risk of depression, 1.81; 95% CI, 0.98-3.35; P=0.06). There was no evidence of heterogeneity between MR estimates produced by different instruments (Q P=0.26). Comparable MR estimates were obtained with weighted median MR (odds ratio, 2.57; 95% CI, 1.05-6.25; P=0.04) and MR pleiotropy residual sum and outlier (odds ratio, 1.81; 95% CI, 0.95-3.46; P=0.08). Conclusions- We found no MR evidence of genetically determined risk of depression affecting ischemic stroke risk but did find consistent MR evidence suggestive of a possible effect on functional outcome after ischemic stroke. Given the widespread prevalence of depression-related morbidity, these findings could have implications for prognostication and personalized rehabilitation after stroke.
Subject(s)
Brain Ischemia/complications , Depression/etiology , Depressive Disorder/etiology , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Recovery of Function/genetics , Stroke/complications , Depression/genetics , Depressive Disorder/genetics , Genome-Wide Association Study , HumansABSTRACT
BACKGROUND: Iron is integral to many physiological processes, and variations in its levels, even within the normal range, can have implications for health. The objective of this study was to explore the broad clinical effects of varying iron status. METHODS AND FINDINGS: Genome-wide association study (GWAS) summary data obtained from 48,972 European individuals (55% female) across 19 cohorts in the Genetics of Iron Status Consortium were used to identify 3 genetic variants (rs1800562 and rs1799945 in the hemochromatosis gene [HFE] and rs855791 in the transmembrane protease serine 6 gene [TMPRSS6]) that associate with increased serum iron, ferritin, and transferrin saturation and decreased transferrin levels, thus serving as instruments for systemic iron status. Phenome-wide association study (PheWAS) of these instruments was performed on 424,439 European individuals (54% female) in the UK Biobank who were aged 40-69 years when recruited from 2006 to 2010, with their genetic data linked to Hospital Episode Statistics (HES) from April, 1995 to March, 2016. Two-sample summary data mendelian randomization (MR) analysis was performed to investigate the effect of varying iron status on outcomes across the human phenome. MR-PheWAS analysis for the 3 iron status genetic instruments was performed separately and then pooled by meta-analysis. Correction was made for testing of multiple correlated phenotypes using a 5% false discovery rate (FDR) threshold. Heterogeneity between MR estimates for different instruments was used to indicate possible bias due to effects of the genetic variants through pathways unrelated to iron status. There were 904 distinct phenotypes included in the MR-PheWAS analyses. After correcting for multiple testing, the 3 genetic instruments for systemic iron status demonstrated consistent evidence of a causal effect of higher iron status on decreasing risk of traits related to anemia (iron deficiency anemia: odds ratio [OR] scaled to a standard deviation [SD] increase in genetically determined serum iron levels 0.72, 95% confidence interval [CI] 0.64-0.81, P = 4 × 10-8) and hypercholesterolemia (hypercholesterolemia: OR 0.88, 95% CI 0.83-0.93, P = 2 × 10-5) and increasing risk of traits related to infection of the skin and related structures (cellulitis and abscess of the leg: OR 1.25, 95% CI 1.10-1.42, P = 6 × 10-4). The main limitations of this study relate to possible bias from pleiotropic effects of the considered genetic variants and misclassification of diagnoses in the HES data. Furthermore, this work only investigated participants with European ancestry, and the findings may not be applicable to other ethnic groups. CONCLUSIONS: Our findings offer novel, to our knowledge, insight into previously unreported effects of iron status, highlighting a potential protective effect of higher iron status on hypercholesterolemia and a detrimental role on risk of skin and skin structure infections. Given the modifiable and variable nature of iron status, these findings warrant further investigation.
Subject(s)
Genome-Wide Association Study/methods , Iron/blood , Mendelian Randomization Analysis/methods , Phenotype , Adult , Aged , Biomarkers/blood , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective StudiesABSTRACT
Objective- Cardiovascular disease, including coronary artery disease (CAD) and ischemic stroke, is the leading cause of death worldwide. This Mendelian randomization study uses genetic variants as instruments to investigate whether there is a causal effect of genetically determined platelet count on CAD and ischemic stroke risk. Approach and Results- A genome-wide association study of 166 066 subjects was used to identify instruments and genetic association estimates for platelet count. Genetic association estimates for CAD and ischemic stroke were obtained from genome-wide association studies, including 60 801 CAD cases and 123 504 controls, and 60 341 ischemic stroke cases and 454 450 controls, respectively. The inverse-variance weighted meta-analysis of ratio method Mendelian randomization estimates was the main method used to obtain estimates for the causal effect of genetically determined platelet count on risk of cardiovascular outcomes. We found no significant Mendelian randomization effect of genetically determined platelet count on risk of CAD (odds ratio of CAD per SD unit increase in genetically determined platelet count, 1.01; 95% CI, 0.98-1.04; P=0.60). However, higher genetically determined platelet count was causally associated with an increased risk of ischemic stroke (odds ratio, 1.07; 95% CI, 1.04-1.11; P<1×10-5), including all major ischemic stroke subtypes. Similar results were obtained in sensitivity analyses more robust to the inclusion of pleiotropic genetic variants. Conclusions- This Mendelian randomization study found evidence that higher genetically determined platelet count is causally associated with higher risk of ischemic stroke.
Subject(s)
Blood Platelets , Brain Ischemia/genetics , Polymorphism, Single Nucleotide , Stroke/genetics , Brain Ischemia/blood , Brain Ischemia/diagnosis , Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Mendelian Randomization Analysis , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Phenotype , Platelet Count , Predictive Value of Tests , Risk Assessment , Risk Factors , Stroke/blood , Stroke/diagnosisABSTRACT
Background and Purpose- Both iron deficiency and excess have been associated with stroke risk in observational studies. However, such associations may be attributable to confounding from environmental factors. This study uses the Mendelian randomization technique to overcome these limitations by investigating the association between genetic variants related to iron status and stroke risk. Methods- A study of 48 972 subjects performed by the Genetics of Iron Status consortium identified genetic variants with concordant relations to 4 biomarkers of iron status (serum iron, transferrin saturation, ferritin, and transferrin) that supported their use as instruments for overall iron status. Genetic estimates from the MEGASTROKE consortium were used to investigate the association between the same genetic variants and stroke risk. The 2-sample ratio method Mendelian randomization approach was used for the main analysis, with the MR-Egger and weighted median techniques used in sensitivity analyses. Results- The main results, reported as odds ratio (OR) of stroke per SD unit increase in genetically determined iron status biomarker, showed a detrimental effect of increased iron status on stroke risk (serum iron OR, 1.07; 95% CI, 1.01-1.14; [log-transformed] ferritin OR, 1.18; 95% CI, 1.02-1.36; and transferrin saturation OR, 1.06; 95% CI, 1.01-1.11). A higher transferrin, indicative of lower iron status, was also associated with decreased stroke risk (OR, 0.92; 95% CI, 0.86-0.99). Examining ischemic stroke subtypes, we found the detrimental effect of iron status to be driven by cardioembolic stroke. These results were supported in statistical sensitivity analyses more robust to the inclusion of pleiotropic variants. Conclusions- This study provides Mendelian randomization evidence that higher iron status is associated with increased stroke risk and, in particular, cardioembolic stroke. Further work is required to investigate the underlying mechanism and whether this can be targeted in preventative strategies.
Subject(s)
Ferritins/metabolism , Iron/metabolism , Stroke/genetics , Transferrin/metabolism , Humans , Mendelian Randomization Analysis , Odds Ratio , Polymorphism, Single Nucleotide , Stroke/metabolismABSTRACT
BACKGROUND: Type 2 diabetes mellitus (T2DM) has been associated with an increased risk of developing several common cancers, but it is unclear whether this association is causal. We aimed to summarize the evidence on T2DM and cancer and evaluate the validity of associations from both observational and Mendelian randomization (MR) studies. METHODS: We performed an umbrella review of the evidence across meta-analyses of observational studies that examined associations of T2DM with risk of developing or dying from site-specific cancers, and MR studies that explored the potential causal association of T2DM and associated biomarkers with cancer risk. RESULTS: We identified eligible observational meta-analyses that assessed associations between T2DM and cancer incidence for 18 cancer sites, cancer mortality for seven sites, and cancer incidence or mortality for four sites. Positive associations between T2DM and six cancers reached strong or highly suggestive evidence. We found eight MR studies assessing the association of genetically predicted T2DM and seven and eight studies assessing the association of genetically predicted fasting insulin or fasting glucose concentrations, respectively, upon site-specific cancers. Positive associations were found between genetically predicted T2DM and fasting insulin and risk of six cancers. There was no association between genetically predicted fasting plasma glucose and cancer except for squamous cell lung carcinoma. CONCLUSIONS: We found robust observational evidence for the association between T2DM and colorectal, hepatocellular, gallbladder, breast, endometrial, and pancreatic cancers. IMPACT: Potential causal associations were identified for genetically predicted T2DM and fasting insulin concentrations and risk of endometrial, pancreas, kidney, breast, lung, and cervical cancers.
Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Neoplasms/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Fasting/blood , Humans , Insulin/blood , Mendelian Randomization Analysis , Meta-Analysis as Topic , Neoplasms/genetics , Observational Studies as Topic , Risk FactorsABSTRACT
Several associations between non-genetic biomarkers and colorectal cancer (CRC) risk have been detected, but the strength of evidence and the direction of associations are not confirmed. We aimed to evaluate the evidence of these associations and integrate results from different approaches to assess causal inference. We searched Medline and Embase for meta-analyses of observational studies, meta-analyses of randomized clinical trials (RCTs), and Mendelian randomization (MR) studies measuring the associations between non-genetic biomarkers and CRC risk and meta-analyses of RCTs on supplementary micronutrients. We repeated the meta-analyses using random-effects models and categorized the evidence based on predefined criteria. We described each MR study and evaluated their credibility. Seventy-two meta-analyses of observational studies and 18 MR studies on non-genetic biomarkers and six meta-analyses of RCTs on micronutrient intake and CRC risk considering 65, 42, and five unique associations, respectively, were identified. No meta-analyses of RCTs on blood level biomarkers have been found. None of the associations were classified as convincing or highly suggestive, three were classified as suggestive, and 26 were classified as weak. For three biomarkers explored in MR studies, there was evidence of causality and seven were classified as likely noncausal. For the first time, results from both observational and MR studies were integrated by triangulating the evidence for a wide variety of non-genetic biomarkers and CRC risk. At blood level, lower vitamin D, higher homeostatic model assessment-insulin resistance, and human papillomavirus infection were associated with higher CRC risk while increased linoleic acid and oleic acid and decreased arachidonic acid were likely causally associated with lower CRC risk. No association was found convincing in both study types.
Subject(s)
Biomarkers, Tumor/blood , Colorectal Neoplasms/etiology , Arachidonic Acid/blood , Colorectal Neoplasms/blood , Colorectal Neoplasms/virology , Helicobacter Infections , Helicobacter pylori , Humans , Insulin Resistance , Linoleic Acid/blood , Mendelian Randomization Analysis , Meta-Analysis as Topic , Micronutrients/administration & dosage , Observational Studies as Topic , Oleic Acid/blood , Papillomavirus Infections/complications , Randomized Controlled Trials as Topic , Risk , Vitamin D/bloodABSTRACT
Background Systemic iron status has been implicated in atherosclerosis and thrombosis. The aim of this study was to investigate the effect of genetically determined iron status on carotid intima-media thickness, carotid plaque, and venous thromboembolism using Mendelian randomization. Methods and Results Genetic instrumental variables for iron status were selected from a genome-wide meta-analysis of 48 972 subjects. Genetic association estimates for carotid intima-media thickness and carotid plaque were obtained using data from 71 128 and 48 434 participants, respectively, and estimates for venous thromboembolism were obtained using data from a study incorporating 7507 cases and 52 632 controls. Conventional 2-sample summary data Mendelian randomization was performed for the main analysis. Higher genetically determined iron status was associated with increased risk of venous thromboembolism. Odds ratios per SD increase in biomarker levels were 1.37 (95% CI 1.14-1.66) for serum iron, 1.25 (1.09-1.43) for transferrin saturation, 1.92 (1.28-2.88) for ferritin, and 0.76 (0.63-0.92) for serum transferrin (with higher transferrin levels representing lower iron status). In contrast, higher iron status was associated with lower risk of carotid plaque. Corresponding odds ratios were 0.85 (0.73-0.99) for serum iron and 0.89 (0.80-1.00) for transferrin saturation, with concordant trends for serum transferrin and ferritin that did not reach statistical significance. There was no Mendelian randomization evidence of an effect of iron status on carotid intima-media thickness. Conclusions These findings support previous work to suggest that higher genetically determined iron status is protective against some forms of atherosclerotic disease but increases the risk of thrombosis related to stasis of blood.