Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur Respir J ; 59(1)2022 01.
Article in English | MEDLINE | ID: mdl-34112731

ABSTRACT

Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.


Subject(s)
Acute Lung Injury , MicroRNAs , Sepsis , Acute Lung Injury/therapy , Animals , Cell- and Tissue-Based Therapy , Endothelial Cells , Humans , Mice , MicroRNAs/genetics , Sepsis/complications , Sepsis/therapy
2.
Inflamm Res ; 68(6): 481-491, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30944975

ABSTRACT

OBJECTIVE AND DESIGN: Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS: We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS: We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS: In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.


Subject(s)
Cytokines/immunology , Macrophage Migration-Inhibitory Factors/immunology , Macrophages/immunology , Respiratory Syncytial Virus Infections/immunology , Animals , Bronchoalveolar Lavage Fluid , Macrophage Migration-Inhibitory Factors/genetics , Macrophages/virology , Mice, Inbred BALB C , Signal Transduction , Viral Load
3.
Mediators Inflamm ; 2017: 2086840, 2017.
Article in English | MEDLINE | ID: mdl-28894350

ABSTRACT

TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO-/- mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Animals , Arachidonate 5-Lipoxygenase/genetics , Flavonoids/pharmacology , Immunoblotting , Leukotrienes/metabolism , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Knockout , Phagocytosis/drug effects , Phagocytosis/genetics , Phagocytosis/physiology , Phosphorylation/drug effects , Phosphorylation/genetics , Rats , Rats, Wistar , Sheep , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
4.
J Immunol ; 192(10): 4765-73, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24729618

ABSTRACT

ATP is an important signaling molecule in the immune system, and it is able to bind the P2X7 purinergic receptor. Recently, our group showed that ATP-treated macrophages eliminate Leishmania amazonensis. It has been reported that leukotriene B4 (LTB4) reduces the parasitic load of infected macrophages. Additionally, it has been demonstrated that the P2X7 receptor can induce PLA2 activation and arachidonic acid mobilization. Based on these findings, we investigated whether LTB4 is produced upon P2X7 receptor activation and examined whether LTB4 modulates parasite elimination. Using macrophages lacking the P2X7 receptor, we observed that ATP was not able to reduce L. amazonensis load. This result suggests a role of the P2X7 purinergic receptor in parasite elimination. In addition, ATP was sufficient to induce LTB4 release from infected control macrophages but not from macrophages lacking the P2X7 receptor. Moreover, we found that ATP failed to decrease the parasitic load in 5-lipoxygenase (LO)-deficient macrophages. Treatment with the 5-LO inhibitor AA861 also impairs the ATP effect on parasitic loads. Furthermore, macrophages from 5-LO knockout mice eliminated L. amazonensis in the presence of exogenous LTB4, and macrophages obtained from P2X7 receptor knockout mice eliminated L. amazonensis when incubated with ionomycin. Finally, we demonstrated that in the presence of CP105696, an antagonist for LTB4 high-affinity receptor, ATP was not able to reduce parasitic load. These results indicate that P2X7 receptor activation leads to LTB4 formation, which is required for L. amazonensis elimination.


Subject(s)
Leishmania/immunology , Leishmaniasis/immunology , Leukotriene B4/immunology , Macrophages, Peritoneal/immunology , Receptors, Purinergic P2X7/immunology , Animals , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/immunology , Benzopyrans/pharmacology , Benzoquinones/pharmacology , Calcium Ionophores/pharmacology , Carboxylic Acids/pharmacology , Female , Ionomycin/pharmacology , Leishmaniasis/genetics , Leishmaniasis/pathology , Leukotriene B4/genetics , Lipoxygenase Inhibitors/pharmacology , Macrophages, Peritoneal/parasitology , Macrophages, Peritoneal/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, Purinergic P2X7/genetics
5.
Mediators Inflamm ; 2015: 435783, 2015.
Article in English | MEDLINE | ID: mdl-25814789

ABSTRACT

Platelets are crucial effector cells in hemostasis. In addition, platelets are increasingly recognized as major inflammatory cells with key roles in innate and adaptive immune responses. Activated platelets have key thromboinflammatory activities linking coagulation to inflammatory response in a variety of coagulation disorders and vasculopathies. Recently identified inflammatory activities of platelets include the synthesis of IL-1ß from spliced pre-RNA, as well as the presence and assembly of inflammasome which intermediate IL-1ß secretion. Here we review the mechanisms by which platelets activate translation machinery and inflammasome assembly to synthesize and release IL-1ß. The contributions of these processes to protective and pathogenic responses during infectious and inflammatory diseases are discussed.


Subject(s)
Blood Coagulation , Blood Platelets/physiology , Communicable Diseases/immunology , Inflammasomes/physiology , Humans , Inflammation/immunology , Interleukin-1beta/metabolism , Signal Transduction , Thrombosis/immunology
6.
Am J Respir Cell Mol Biol ; 50(1): 87-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23947598

ABSTRACT

Postsepsis lung injury is a common clinical problem associated with significant morbidity and mortality. Leukotrienes (LTs) are important lipid mediators of infection and inflammation derived from the 5-lipoxygenase (5-LO) metabolism of arachidonate with the potential to contribute to lung damage after sepsis. To test the hypothesis that LTs are mediators of lung injury after sepsis, we assessed lung structure, inflammatory mediators, and mechanical changes after cecal ligation and puncture surgery in wild-type (WT) and 5-LO knockout (5-LO(-/-)) mice and in WT mice treated with a pharmacologic LT synthesis inhibitor (MK886) and LT receptor antagonists (CP105,696 and montelukast). Sixteen hours after surgery, WT animals exhibited severe lung injury (by histological analysis), substantial mechanical impairment (i.e., an increase in static lung elastance), an increase in neutrophil infiltration, and high levels of LTB4, cysteinyl-LTs (cys-LTs), prostaglandin E2, IL-1ß, IL-6, IL-10, IL-17, KC (CXCL1), and monocyte chemotactic protein-1 (CCL2) in lung tissue and plasma. 5-LO(-/-) mice and WT mice treated with a pharmacologic 5-LO inhibitor were significantly protected from lung inflammation and injury. Selective antagonists for BLT1 or cys-LT1, the high-affinity receptors for LTB4 and cys-LTs, respectively, were insufficient to provide protection when used alone. These results point to an important role for 5-LO products in sepsis-induced lung injury and suggest that the use of 5-LO inhibitors may be of therapeutic benefit clinically.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Lung Injury/metabolism , Sepsis/metabolism , Signal Transduction/physiology , Animals , Cecum/drug effects , Cecum/metabolism , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Leukotriene Antagonists/pharmacology , Leukotriene B4/metabolism , Lung Injury/drug therapy , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Receptors, Leukotriene/metabolism , Receptors, Leukotriene B4/metabolism , Sepsis/drug therapy , Signal Transduction/drug effects
7.
J Immunol ; 186(11): 6562-7, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21536805

ABSTRACT

High concentrations of free heme found during hemolytic events or cell damage leads to inflammation, characterized by neutrophil recruitment and production of reactive oxygen species, through mechanisms not yet elucidated. In this study, we provide evidence that heme-induced neutrophilic inflammation depends on endogenous activity of the macrophage-derived lipid mediator leukotriene B(4) (LTB(4)). In vivo, heme-induced neutrophil recruitment into the peritoneal cavity of mice was attenuated by pretreatment with 5-lipoxygenase (5-LO) inhibitors and leukotriene B(4) receptor 1 (BLT1) receptor antagonists as well as in 5-LO knockout (5-LO(-/-)) mice. Heme administration in vivo increased peritoneal levels of LTB(4) prior to and during neutrophil recruitment. Evidence that LTB(4) was synthesized by resident macrophages, but not mast cells, included the following: 1) immuno-localization of heme-induced LTB(4) was compartmentalized exclusively within lipid bodies of resident macrophages; 2) an increase in the macrophage population enhanced heme-induced neutrophil migration; 3) depletion of resident mast cells did not affect heme-induced LTB(4) production or neutrophil influx; 4) increased levels of LTB(4) were found in heme-stimulated peritoneal cavities displaying increased macrophage numbers; and 5) in vitro, heme was able to activate directly macrophages to synthesize LTB(4). Our findings uncover a crucial role of LTB(4) in neutrophil migration induced by heme and suggest that beneficial therapeutic outcomes could be achieved by targeting the 5-LO pathway in the treatment of inflammation associated with hemolytic processes.


Subject(s)
Cell Movement/drug effects , Heme/pharmacology , Leukotriene B4/metabolism , Neutrophils/drug effects , Animals , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Cells, Cultured , Female , Macrophages/drug effects , Macrophages/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/cytology , Neutrophils/metabolism , Receptors, Leukotriene B4/metabolism , Thioglycolates/pharmacology , p-Methoxy-N-methylphenethylamine/pharmacology
8.
Shock ; 38(6): 620-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143054

ABSTRACT

The mechanism of immunosuppression induced by severe sepsis is not fully understood. The production of prostaglandin E2 (PGE2) during sepsis is well known, but its role in long-term consequences of sepsis has not been explored. The current study evaluates the role of PGE2 in the development of immunosuppression secondary to sepsis and its potential as therapeutic target. Cecal ligation and puncture was used as an experimental model for sepsis induction in Balb/c and C57BL/6 mice. Immunosuppression was evaluated by the response to secondary infection with Aspergillus fumigatus in sepsis survivors. The role of prostanoids was evaluated in vivo and in vitro by treatment with the cyclooxygenase inhibitor ketoprofen. Balb/c mice were more susceptible than C57BL/6 to severe sepsis and to secondary infection, with a greater mortality rate. Prostaglandin E2 concentrations found in bronchoalveolar lavage in sham and cecal ligation and puncture group after fungal challenge were much higher in Balb/c than in C57BL/6 mice. Ketoprofen treatment improved survival of septic Balb/c mice subjected to secondary infection, while also enhancing macrophage phagocytosis and neutrophil recruitment to the lungs. We identified a pivotal role for PGE2 acting on EP4 receptors in modulating cytokine production differentially by sham and septic macrophages. Furthermore, sepsis also altered key enzymes in PGE2 synthesis and degradation. Our results indicate the involvement of PGE2 in severe sepsis-induced immunosuppression. Inhibition of PGE2 production represents an attractive target to improve innate immune response against secondary infection in the immunocompromised host.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Dinoprostone/immunology , Immune Tolerance/drug effects , Ketoprofen/adverse effects , Sepsis/immunology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytokines/immunology , Disease Models, Animal , Ketoprofen/pharmacology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred BALB C , Phagocytosis/drug effects , Phagocytosis/immunology , Receptors, Prostaglandin E, EP4 Subtype/immunology , Sepsis/drug therapy , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL