Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
J Microsc ; 261(2): 167-76, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25762522

ABSTRACT

Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general.


Subject(s)
Endocytosis , Nanoparticles/analysis , Quantum Dots/analysis , Cell Line , Endosomes/ultrastructure , Flow Cytometry , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Quantum Dots/ultrastructure , Semiconductors
2.
Elife ; 62017 02 23.
Article in English | MEDLINE | ID: mdl-28230527

ABSTRACT

In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of 'funnel plasmodesmata'. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as 'batch unloading'. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots.


Subject(s)
Arabidopsis/metabolism , Phloem/metabolism , Plant Roots/metabolism , Biological Transport , Models, Theoretical , Optical Imaging , Plasmodesmata/metabolism
3.
ACS Nano ; 11(3): 2652-2664, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28221763

ABSTRACT

There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 µm) and long (L-AgNWs; 10 µm) nanowires instilled into the lungs of Sprague-Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health.


Subject(s)
Lung/drug effects , Nanowires/chemistry , Silver/chemistry , Animals , Instillation, Drug , Lung/metabolism , Lung/pathology , Nanowires/administration & dosage , Rats , Rats, Sprague-Dawley , Silver/administration & dosage
4.
Sci Rep ; 3: 1177, 2013.
Article in English | MEDLINE | ID: mdl-23378910

ABSTRACT

Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy.

5.
Biomaterials ; 32(35): 9470-82, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21889202

ABSTRACT

Calcium phosphate and hydroxyapatite nanoparticles are extensively researched for medical applications, including bone implant materials, DNA and SiRNA delivery vectors and slow release vaccines. Elucidating the mechanisms by which cells internalize nanoparticles is fundamental for their long-term exploitation. In this study, we demonstrate that hydrophilic hydroxyapatite nanoparticles are sequestered within a specialized compartment called SCC (surface-connected compartment). This membrane-bound compartment is an elaborate labyrinth-like structure directly connected to the extracellular space. This continuity is demonstrated by in vivo 2-photon microscopy of ionic calcium using both cell-permeable and cell-impermeable dyes and by 3-D reconstructions from serial block-face SEM of fixed cells. Previously, this compartment was thought to be initiated specifically by exposure of macrophages to hydrophobic nanoparticles. However, we show that the SCC can be triggered by a much wider range of nanoparticles. Furthermore, we demonstrate its formation in A549 human lung epithelial cells, which are considerably less phagocytic than macrophages. EDX shows that extensive amounts of hydroxyapatite nanoparticles can be sequestered in this manner. We propose that SCC formation may be a means to remove large amounts of foreign material from the extracellular space, followed by slow degradation, may be to avoid excessive damage to surrounding cells or tissues.


Subject(s)
Cell Compartmentation , Durapatite/metabolism , Extracellular Space/metabolism , Macrophages/metabolism , Monocytes/metabolism , Nanoparticles/chemistry , Calcium/metabolism , Cathepsin D/metabolism , Cell Line, Tumor , Cell Survival , Colloids , Diffusion , Endosomes/metabolism , Fluorescent Antibody Technique , Humans , Image Processing, Computer-Assisted , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Macrophages/cytology , Macrophages/ultrastructure , Microscopy, Confocal , Microscopy, Fluorescence, Multiphoton , Monocytes/cytology , Monocytes/ultrastructure , Nanoparticles/ultrastructure , Phase Transition , Spectrometry, X-Ray Emission , Vesicular Transport Proteins/metabolism
6.
PLoS One ; 4(11): e7716, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19893745

ABSTRACT

The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) and Serial Block Face/Scanning Electron Microscopy (SBF/SEM). The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.


Subject(s)
Blood Vessels/metabolism , Blood Vessels/pathology , Microscopy, Electron, Scanning/methods , Animals , Animals, Genetically Modified , Developmental Biology , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Ions , Microscopy, Electron, Transmission/methods , Microscopy, Fluorescence/methods , Models, Anatomic , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL