ABSTRACT
OBJECTIVE: The recent advances in technology are opening a new opportunity to remotely evaluate motor features in people with Parkinson's disease (PD). We hypothesized that typing on an electronic device, a habitual behavior facilitated by the nigrostriatal dopaminergic pathway, could allow for objectively and nonobtrusively monitoring parkinsonian features and response to medication in an at-home setting. METHODS: We enrolled 31 participants recently diagnosed with PD who were due to start dopaminergic treatment and 30 age-matched controls. We remotely monitored their typing pattern during a 6-month (24 weeks) follow-up period before and while dopaminergic medications were being titrated. The typing data were used to develop a novel algorithm based on recursive neural networks and detect participants' responses to medication. The latter were defined by the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) minimal clinically important difference. Furthermore, we tested the accuracy of the algorithm to predict the final response to medication as early as 21 weeks prior to the final 6-month clinical outcome. RESULTS: The score on the novel algorithm based on recursive neural networks had an overall moderate kappa agreement and fair area under the receiver operating characteristic (ROC) curve with the time-coincident UPDRS-III minimal clinically important difference. The participants classified as responders at the final visit (based on the UPDRS-III minimal clinically important difference) had higher scores on the novel algorithm based on recursive neural networks when compared with the participants with stable UPDRS-III, from the third week of the study onward. CONCLUSIONS: This preliminary study suggests that remotely gathered unsupervised typing data allows for the accurate detection and prediction of drug response in PD. © 2019 International Parkinson and Movement Disorder Society.
Subject(s)
Habits , Parkinson Disease/drug therapy , Cognition/physiology , Female , Humans , Male , Minimal Clinically Important Difference , Parkinson Disease/diagnosis , ROC Curve , Severity of Illness IndexABSTRACT
BACKGROUND: Paced Auditory Serial Addition Test (PASAT) is one of the most used neuropsychological tests in multiple sclerosis (MS), specially for screening. However, the applicability of the test is limited because of the rejection of the test completion in a proportion of patients. We aimed to investigate the clinical, neuropsychological, and MRI findings associated to PASAT rejection. METHODS: Cross-sectional and observational study. A total of 343 patients with MS underwent neuropsychological testing and structural MRI. RESULTS: One hundred and twenty-one (35.3%) of patients declined the administration of the test. Among those patients that declined the administration, rejection occurred before the onset of test in 35.5%, during or after the practice in 43%, and during the test administration in 21.5%. Rejection of the test was associated to a worse performance in all cognitive tests administered, but not to depression or baseline fatigue scales. In regression analysis, education, cognitive impairment, EDSS, and white matter lesion load were independently associated to rejection of the test. CONCLUSIONS: Paced Auditory Serial Addition Test rejection is associated with a higher probability of cognitive impairment in MS. This suggests that patients that reject the administration of PASAT should be further examined with a neuropsychological battery to evaluate the possibility of cognitive dysfunction.
Subject(s)
Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Multiple Sclerosis/psychology , Neuropsychological Tests , Patient Compliance , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Multiple Sclerosis/complicationsABSTRACT
Intercellular communication via gap junction channels between oligodendrocytes and between astrocytes as well as between these cell types is essential to maintain the integrity of myelin in the central nervous system. Oligodendrocyte gap junction connexin-47 (Cx47) is a key element in this crosstalk and indeed, mutations in human Cx47 cause severe myelin disorders. However, the permeation properties of channels of Cx47 alone and in heterotypic combination with astrocyte Cx43 remain unclear. We show here that Cx47 contains three extra residues at 5' amino-terminus that play a critical role in the channel pore structure and account for relative low ionic conductivity, cationic permselectivity and voltage-gating properties of oligodendrocyte-oligodendrocyte Cx47 channels. Regarding oligodendrocyte-astrocyte coupling, heterotypic channels formed by Cx47 with Cx43 exhibit ionic and chemical rectification, which creates a directional diffusion barrier for the movement of ions and larger negatively charged molecules from cells expressing Cx47 to those with Cx43. The restrictive permeability of Cx47 channels and the diffusion barrier of Cx47-Cx43 channels was abolished by a mutation associated with leukodystrophy, the Cx47P90S, suggesting a novel pathogenic mechanism underlying myelin disorders that involves alterations in the panglial permeation.
Subject(s)
Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Intercellular Junctions/metabolism , Animals , Carbenoxolone/pharmacology , Cell Line, Tumor , Electric Stimulation , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Intercellular Junctions/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Microinjections , Models, Molecular , Mutagenesis , Neuroblastoma/pathology , Oocytes , Transfection , Xenopus laevisABSTRACT
BACKGROUND: The Paced Auditory Serial Addition Test (PASAT) is a useful cognitive test in patients with multiple sclerosis (MS), assessing sustained attention and information processing speed. However, the neural underpinnings of performance in the test are controversial. We aimed to study the neural basis of PASAT performance by using structural magnetic resonance imaging (MRI) in a series of 242 patients with MS. METHODS: PASAT (3-s) was administered together with a comprehensive neuropsychological battery. Global brain volumes and total T2-weighted lesion volumes were estimated. Voxel-based morphometry and lesion symptom mapping analyses were performed. RESULTS: Mean PASAT score was 42.98 ± 10.44; results indicated impairment in 75 cases (31.0%). PASAT score was correlated with several clusters involving the following regions: bilateral precuneus and posterior cingulate, bilateral caudate and putamen, and bilateral cerebellum. Voxel-based lesion symptom mapping showed no significant clusters. Region of interest-based analysis restricted to white matter regions revealed a correlation with the left cingulum, corpus callosum, bilateral corticospinal tracts, and right arcuate fasciculus. Correlations between PASAT scores and global volumes were weak. CONCLUSION: PASAT score was associated with regional volumes of the posterior cingulate/precuneus and several subcortical structures, specifically the caudate, putamen, and cerebellum. This emphasises the role of both cortical and subcortical structures in cognitive functioning and information processing speed in patients with MS.
Subject(s)
Brain Mapping , Brain/diagnostic imaging , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/physiopathology , Neuropsychological Tests , Attention/physiology , Cognition/physiology , Female , Humans , Male , Middle AgedABSTRACT
Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD.
Subject(s)
Apoptosis , Connexins/analysis , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Animals , Cell Death , Connexins/metabolism , Dystrophin/analysis , Dystrophin/metabolism , Female , Humans , Male , Mice, Inbred mdx , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , NF-kappa B/analysis , NF-kappa B/metabolism , Receptors, Purinergic P2X7/analysis , Receptors, Purinergic P2X7/metabolismSubject(s)
Alzheimer Disease , Multiple Sclerosis , Amyloid , Biomarkers , Humans , Myelin Sheath , Positron-Emission TomographyABSTRACT
Introduction: Rituximab (RTX) is considered a potential therapeutic option for relapsing-remitting (RRMS) and progressive forms (PMS) of multiple sclerosis (MS). The main objective of this work was to investigate the effectiveness and safety of rituximab in MS. Patients and methods: Observational multicenter study of clinical and radiological effectiveness and safety of rituximab in RRMS and PMS. Results: A total of 479 rituximab-treated patients were included in 12 Spanish centers, 188 RRMS (39.3%) and 291 (60.7%) PMS. Despite standard treatment, the annualized relapse rate (ARR) the year before RTX was 0.63 (SD: 0.8) and 156 patients (41%) had at least one gadolinium-enhanced lesion (GEL) on baseline MRI. Mean EDSS had increased from 4.3 (SD: 1.9) to 4.8 (SD: 1.7) and almost half of the patients (41%) had worsened at least one point. After a median follow-up of 14.2 months (IQR: 6.5-27.2), ARR decreased by 85.7% (p < 0.001) and GEL by 82.9%, from 0.41 to 0.07 (p < 0.001). A significant decrease in EDSS to 4.7 (p = 0.046) was observed after 1 year of treatment and this variable remained stable during the second year of therapy. There was no evidence of disease activity in 68% of patients. Infusion-related symptoms were the most frequent side effect (19.6%) and most were mild. Relevant infections were reported only in 18 patients (including one case of probable progressive multifocal leukoencephalopathy). Conclusion: Rituximab could be an effective and safe treatment in RRMS, including aggressive forms of the disease. Some selected PMS patients could also benefit from this treatment.
ABSTRACT
It has been previously reported that growth of Debaryomyces hansenii in 2 M NaCl induced the expression of ARO4. This gene codifies for DhAro4p, involved in the synthesis of the amino acid tyrosine. In this work we studied the activity of DhAro4p upon salt stress; a higher activity was observed in cells grown with 2 M NaCl, but tyrosine levels were not increased. On the other hand, the addition of tyrosine to the saline medium significantly enhanced the growth of D. hansenii. It was found that the oxidized form of tyrosine, 3-nitrotyrosine, increased in the presence of salt. Since NaCl protects against oxidative stress in D. hansenii (Navarrete et al., 2009), we propose that a protective pathway is the de novo synthesis of tyrosine and its immediate oxidation to 3-nitrotyrosine to counteract oxidative stress generated by salt stress, so we measured the production of reactive oxygen species (ROS) and nitric oxide (NOâ») in D. hansenii after growing in 2 M NaCl. Results showed the presence of NOâ» and the increased production of ROS; this is probably due to an increased respiratory activity in the cells grown in the presence of salt. Our results demonstrate that upon salt stress D hansenii responds to oxidative stress via the transcriptional activation of specific genes such as DhARO4.
Subject(s)
3-Deoxy-7-Phosphoheptulonate Synthase/genetics , Fungal Proteins/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism , Saccharomycetales/enzymology , Sodium Chloride/metabolism , Transcriptional Activation , Tyrosine/metabolism , 3-Deoxy-7-Phosphoheptulonate Synthase/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Saccharomycetales/genetics , Saccharomycetales/growth & development , Saccharomycetales/metabolismABSTRACT
Background: Multiple sclerosis (MS) treatment has radically improved over the last years; however, MS symptom management is still challenging. The novel Spasticity-Plus syndrome was conceptualized to frame several spasticity-related symptoms that can be addressed together with broad-spectrum medication, such as certain cannabinoid-based drugs. The aim of this project was to gain insight into Spanish neurologists' clinical experience on MS spasticity and associated symptoms, and to assess the acknowledgment and applicability of the Spasticity-Plus syndrome concept in patients with MS. Methods: Ten online meetings were conducted using the Workmat® methodology to allow structured discussions. Fifty-five Spanish neurologists, experts in MS management, completed and discussed a set of predefined exercises comprising MS symptom assessment and its management in clinical practice, MS symptoms clustering in clinical practice, and their perception of the Spasticity-Plus syndrome concept. This document presents the quantitative and qualitative results of these discussions. Results: The specialists considered that polytherapy is a common concern in MS and that simplifying the management of MS spasticity and associated manifestations could be useful. They generally agreed that MS spasticity should be diagnosed before moderate or severe forms appear. According to the neurologists' clinical experience, symptoms commonly associated with MS spasticity included spasms/cramps (100% of the specialists), pain (85%), bladder dysfunction (62%), bowel dysfunction (42%), sleep disorders (42%), and sexual dysfunction (40%). The multiple correspondence analysis revealed two main symptom clusters: spasticity-spasms/cramps-pain, and ataxia-instability-vertigo. Twelve out of 16 symptoms (75%) were scored >7 in a 0-10 QoL impact scale by the specialists, representing a moderate-high impact. The MS specialists considered that pain, spasticity, spasms/cramps, bladder dysfunction, and depression should be a treatment priority given their frequency and chance of therapeutic success. The neurologists agreed on the usefulness of the new Spasticity-Plus syndrome concept to manage spasticity and associated symptoms together, and their experience with treatments targeting the cannabinoid system was satisfactory. Conclusions: The applicability of the new concept of Spasticity-Plus in MS clinical practice seems possible and may lead to an integrated management of several MS symptoms, thus reducing the treatment burden of disease symptoms.
ABSTRACT
Multiple sclerosis (MS) pathology progressively affects multiple central nervous system (CNS) areas. Due to this fact, MS produces a wide array of symptoms. Symptomatic therapy of one MS symptom can cause or worsen other unwanted symptoms (anticholinergics used for bladder dysfunction produce impairment of cognition, many MS drugs produce erectile dysfunction, etc.). Appropriate symptomatic therapy is an unmet need. Several important functions/symptoms (muscle tone, sleep, bladder, pain) are mediated, in great part, in the brainstem. Cannabinoid receptors are distributed throughout the CNS irregularly: There is an accumulation of CB1 and CB2 receptors in the brainstem. Nabiximols (a combination of THC and CBD oromucosal spray) interact with both CB1 and CB2 receptors. In several clinical trials with Nabiximols for MS spasticity, the investigators report improvement not only in spasticity itself, but also in several functions/symptoms mentioned before (spasms, cramps, pain, gait, sleep, bladder function, fatigue, and possibly tremor). We can conceptualize and, therefore, hypothesize, through this indirect information, that it could be considered the existence of a broad "Spasticity-Plus Syndrome" that involves, a cluster of symptoms apart from spasticity itself, the rest of the mentioned functions/symptoms, probably because they are interlinked after the increase of muscle tone and mediated, at least in part, in the same or close areas of the brainstem. If this holds true, there exists the possibility to treat several spasticity-related symptoms induced by MS pathology with a single therapy, which would permit to avoid the unnecessary adverse effects produced by polytherapy. This would result in an important advance in the symptomatic management of MS.
ABSTRACT
INTRODUCTION: Several experimental studies have suggested the potential remyelinating effects of vitamin D (VitD) supplements regardless of the presence of VitD deficiency. This study aims to analyze neurogenesis in a model of toxic demyelination in order to evaluate the effects of VitD on demyelination and remyelination. MATERIAL AND METHODS: We used 24 male Wistar rats that had received surgical lesions to the corpus callosum and were injected with lysolecithin. Rats were divided into three groups: Group 1 included eight rats with lesions to the corpus callosum but not lysolecithin injections (sham group), group 2 included eight rats with lesions to the corpus callosum that were injected with lysolecithin (lysolecithin group), and group 3 included eight rats with lesions that were injected with lysolecithin and received VitD (VitD group). We analyzed neurogenesis both in the subventricular zone and at the lesion site. RESULTS: Administration of VitD promotes the proliferation and differentiation of neural stem cells in the subventricular zone and the migration of these cells to the lesion site in the corpus callosum; these cells subsequently differentiate into oligodendrocyte lineage cells and produce myelin basic protein. This phenomenon was not caused by microglial activation, which was less marked in rats receiving VitD. Megalin expression did not increase at the lesion site, which suggests that VitD is internalized by other mechanisms. CONCLUSION: Our results support the hypothesis that regardless of the presence of VitD deficiency, treatment with VitD may contribute to remyelination by promoting the proliferation of oligodendrocyte precursor cells.
Subject(s)
Oligodendroglia/physiology , Remyelination , Vitamin D , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Lineage/drug effects , Male , Multiple Sclerosis/therapy , Neural Stem Cells/physiology , Rats , Rats, Wistar , Remyelination/drug effects , Remyelination/physiology , Treatment Outcome , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamins/metabolism , Vitamins/pharmacologyABSTRACT
BACKGROUND: Cognitive dysfunction is prevalent among patients with multiple sclerosis (MS). In recent years, several (generally brief) neuropsychological batteries have been proposed for cognitive assessment. There is a need for comprehensive batteries providing complete cognitive assessment of patients with MS. The Neuronorma battery includes several standardised neuropsychological tests examining the main cognitive domains, and is available in several countries. The aim of this study was to validate the battery for cognitive assessment in a sample of patients with MS and healthy controls, and to find the most appropriate criteria for defining cognitive impairment using this battery. METHODS: Five hundred and sixty participants (280 with MS and 280 controls matched for age, sex, and years of education) were included. Inter-group differences were calculated using the Mann-Whitney U test and effect sizes with Cohen's d. Several criteria for definition of cognitive impairment were evaluated, according to different cut-off points, and the number of tests and cognitive domains impaired. Receiver operating characteristic curves with 95% confidence intervals were estimated and they were compared using the DeLong method. RESULTS: Patients with MS showed poorer performance in almost all cognitive tests, with large effect sizes for the Symbol Digit Modalities Test and Judgement of Line Orientation, and moderate effects for Digit Span Backward, the Corsi test, Trail Making Test, Free and Cued Selective Reminding Test, Rey-Osterrieth Complex Figure (recall), verbal fluency (P words), and the Stroop Color-Word Interference Test. The area under the curve was superior for classification by cognitive domain than for the mean scaled score of the tests or the number of tests showing impairment according to different cut-off points for the adjusted scaled scores. CONCLUSIONS: Our study validates the Neuronorma battery for cognitive assessment of patients with MS. The battery is currently available in several countries with reliable normative data, and may be useful in both the clinical and the research settings when comprehensive neuropsychological examination is warranted.
Subject(s)
Cognitive Dysfunction/diagnosis , Multiple Sclerosis/diagnosis , Neuropsychological Tests/standards , Adult , Cognitive Dysfunction/etiology , Female , Humans , Male , Middle Aged , Multiple Sclerosis/complications , Reproducibility of ResultsABSTRACT
Objective: Episodic memory is frequently impaired in Multiple Sclerosis (MS), but the cognitive characteristics and neuropsychological processes involved remain controversial. Our aim was to study episodic memory dysfunction in MS, using the LASSI-L, a novel memory-based cognitive stress test that uses a new paradigm that capitalizes on semantic interference. Methods: Cross-sectional study in which 93 patients with MS (relapsing-remitting) and 124 healthy controls were included. The LASSI-L test was administered to all participants, as well as a comprehensive neuropsychological battery including a selective reminding test. MS patients were divided into two groups, with cognitive impairment (CI-MS) and cognitively preserved (CP-MS). Results: Reliability of the LASSI-L test was high (Cronbach's alpha 0.892) and there were less ceiling effects. MS patients scored lower than controls on all LASSI-L subtests, except for maximum storage of the initial target items (CRA2). Effect sizes were moderate-large. A delay in learning, difficulties in retroactive semantic interference, failure to recover from proactive semantic interference, and delayed recall were the most frequent findings in MS patients. Scores associated with maximum storage capacity, and retroactive semantic interference were the most strongly associated with cognitive impairment and employment status. Conclusion: We found that deficits in maximum learning, difficulties in recovery from the effects of proactive semantic interference and retroactive semantic interference are three important breakdowns in episodic memory deficits among patients with MS. The LASSI-L showed good psychometric and diagnostic properties. Overall, our study supports the utility of the LASSI-L, as a new cognitive test, useful for neuropsychological assessment in MS in clinical and research settings.
ABSTRACT
OBJECTIVE: To study the clinical, cognitive, and radiological progression of a cohort of patients with MS, taking into account the amyloid PET with 18F-florbetaben analyses. METHODS: Twenty-nine patients with MS were assessed with longitudinal structural MRI and a clinical and comprehensive neuropsychological protocol, with a mean interval between assessments of 18 ± 3.31 months. 18F-florbetaben PET was performed at baseline. Uptake was analysed in demyelinating plaques (DWM) and normal-appearing white matter (NAWM). Results were correlated with clinical, cognitive and MRI data. RESULTS: Patients with cognitive decline over the follow-up period showed a lower standardised uptake value ratio in NAWM and lower thalamic volume and a higher lesion load in the baseline MRI. Myelin status was correlated with EDSS and cognitive tests mainly evaluating visuospatial function and working memory. Lower uptake in NAWM at baseline was also associated with a growth in white matter lesion volume over time. CONCLUSIONS: Lower white matter uptake in amyloid PET is associated with cognitive decline and an increase in white matter lesion volume during the follow-up. Our study suggests that 18F-florbetaben may be a useful biomarker in assessing myelin status in MS, understanding MS pathophysiology, and predicting cognitive outcomes.
ABSTRACT
Myotonia congenita (MC) is a Mendelian inherited genetic disease caused by the mutations in the CLCN1 gene, encoding the main skeletal muscle ion chloride channel (ClC-1). The clinical diagnosis of MC should be suspected in patients presenting myotonia, warm-up phenomenon, a characteristic electromyographic pattern, and/or family history. Here, we describe the largest cohort of MC Spanish patients including their relatives (up to 102 individuals). Genetic testing was performed by CLCN1 sequencing and multiplex ligation-dependent probe amplification (MLPA). Analysis of selected exons of the SCN4A gene, causing paramyotonia congenita, was also performed. Mutation spectrum and analysis of a likely founder effect of c.180+3A>T was achieved by haplotype analysis and association tests. Twenty-eight different pathogenic variants were found in the CLCN1 gene, of which 21 were known mutations and seven not described. Gross deletions/duplications were not detected. Four probands had a pathogenic variant in SCN4A. Two main haplotypes were detected in c.180+3A>T carriers and no statistically significant differences were detected between case and control groups regarding the type of haplotype and its frequencies. A diagnostic yield of 51% was achieved; of which 88% had pathogenic variants in CLCN1 and 12% in SCN4A. The existence of a c.180+3A>T founder effect remains unsolved.
Subject(s)
Chloride Channels/genetics , Myotonia Congenita/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Cohort Studies , Exons , Female , Founder Effect , Haplotypes , Humans , Male , Muscle, Skeletal/metabolism , Mutation , Myotonia Congenita/diagnosis , Polymorphism, Single Nucleotide , SpainABSTRACT
Objective: Cognitive impairment is an important feature in multiple sclerosis (MS) and has been associated to several Magnetic Resonance Imaging (MRI) markers, but especially brain atrophy. However, the relationship between specific neuropsychological tests examining several cognitive functions and brain volumes has been little explored. Furthermore, because MS frequently damage subcortical regions, it may be an interesting model to examine the role of subcortical areas in cognitive functioning. Our aim was to identify correlations between specific brain regions and performance in neuropsychological tests evaluating different cognitive functions in a large series of patients with MS. Methods: A total of 375 patients were evaluated with a comprehensive neuropsychological battery and with MRI. Voxel-based morphometry was conducted to analyse the correlation between cognitive performance and gray matter damage, using Statistical Parametric Mapping with the toolboxes VBM8 and Lesion Segmentation Tool. Results: The following correlations were found: Corsi block-tapping test with right insula; Trail Making Test with caudate nucleus, thalamus, and several cortical regions including the posterior cingulate and inferior frontal gyrus; Symbol Digit Modalities Test with caudate nucleus, thalamus, posterior cingulate, several frontal regions, insula, and cerebellum; Stroop Color and Word Test with caudate nucleus and putamen; Free and Cued Selective Reminding Test and Rey-Osterrieth Complex Figure with thalamus, precuneus, and parahippocampal gyrus; Boston Naming Test with thalamus, caudate nucleus, and hippocampus; semantic verbal fluency with thalamus and phonological verbal fluency with caudate nucleus; and Tower of London test with frontal lobe, caudate nucleus, and posterior cingulate. Conclusion: Our study provides valuable data on the cortical and subcortical basis of cognitive function in MS. Neuropsychological tests mainly assessing attention and executive function showed a stronger association with caudate volume, while tests primarily evaluating memory were more strongly correlated with the thalamus. Other relevant regions were the posterior cingulate/precuneus, which were associated with attentional tasks, and several frontal regions, which were found to be correlated with planning and higher order executive functioning. Furthermore, our study supports the brain vertical organization of cognitive functioning, with the participation of the cortex, thalamus, basal ganglia, and cerebellum.
ABSTRACT
Objectives: Autoimmune diseases (AID) follow a complex, probably polygenic, pattern of inheritance and often cluster in families of patients with multiple sclerosis (MS). Our objective was to analyze family patterns and characteristics in families including more than one patient with MS. Materials and Methods: We analyzed personal and family history of neurological, systemic, and autoimmune diseases in 84 MS patients from 40 different families. Families were classified in two groups: families with cases of MS in at least two different generations (15 families) and families in which cases of MS belonged to only one generation (25 families). Results: The two previously established groups presented different clinical patterns and frequency of association with another AID. In one group, the second generation displayed a higher annual relapse rate than the first generation, higher frequency of progressive forms of MS, and more patients with another AID in addition to MS. Relapsing-remitting forms of MS (RRMS) were more frequent in the other group. Conclusions: Families that include more than one MS patient may show two distinct patterns. This finding seems important for the compression and analysis of genetic information on MS.
Subject(s)
Autoimmune Diseases/genetics , Multiple Sclerosis/genetics , Adult , Age of Onset , Aged , Female , Humans , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/genetics , Pedigree , Young AdultABSTRACT
BACKGROUND: Cognitive impairment is frequent and disabling in multiple sclerosis (MS). Changes in information processing speed constitute the most important cognitive deficit in MS. However, given the clinical and topographical variability of the disease, cognitive impairment may vary greatly and appear in other forms in addition to slower information processing speed. Our aim was to determine the frequency of cognitive impairment, the principal cognitive domains, and components involved in MS and to identify factors associated with presence of cognitive impairment in these patients in a large series of patients. METHODS: Cross-sectional study of 311 patients with MS [236 with relapsing-remitting MS (RRMS), 52 with secondary progressive MS (SPMS), and 23 with primary progressive MS (PPMS)]. Patients' cognitive function was assessed with a comprehensive neuropsychological assessment protocol. Patients displaying deficits in 2 or more cognitive domains were considered to have cognitive impairment associated with MS. We conducted a principal component analysis to detect different cognitive patterns by identifying clusters of tests highly correlated to one another. RESULTS: Cognitive impairment was detected in 41.5% of the sample, and it was more frequent in patients with SPMS and PPMS (P = 0.002). Expanded Disability Status Scale scores and education were independent predictors of cognitive impairment. Principal component analysis identified seven clusters: attention and basic executive function (including information processing speed), planning and high-level executive function, verbal memory and language, executive and visuospatial performance time, fatigue-depression, visuospatial function, and basic attention and verbal/visual working memory. Mean scoring of components 2 (high-order executive functioning) and 3 (verbal memory-language) was higher in patients with RRMS than in those with PPMS (component 2) and SPMS (component 3). CONCLUSION: MS is linked to multiple cognitive profiles and disturbances in different domains. This suggests that cognitive alterations in MS are heterogeneous and affect other domains in addition to information processing speed.
ABSTRACT
Mobile technology is opening a wide range of opportunities for transforming the standard of care for chronic disorders. Using smartphones as tools for longitudinally tracking symptoms could enable personalization of drug regimens and improve patient monitoring. Parkinson's disease (PD) is an ideal candidate for these tools. At present, evaluation of PD signs requires trained experts to quantify motor impairment in the clinic, limiting the frequency and quality of the information available for understanding the status and progression of the disease. Mobile technology can help clinical decision making by completing the information of motor status between hospital visits. This paper presents an algorithm to detect PD by analyzing the typing activity on smartphones independently of the content of the typed text. We propose a set of touchscreen typing features based on a covariance, skewness, and kurtosis analysis of the timing information of the data to capture PD motor signs. We tested these features, both independently and in a multivariate framework, in a population of 21 PD and 23 control subjects, achieving a sensitivity/specificity of 0.81/0.81 for the best performing feature and 0.73/0.84 for the best multivariate method. The results of the alternating finger-tapping, an established motor test, measured in our cohort are 0.75/0.78. This paper contributes to the development of a home-based, high-compliance, and high-frequency PD motor test by analysis of routine typing on touchscreens.
Subject(s)
Diagnosis, Computer-Assisted/methods , Diagnostic Techniques, Neurological , Mobile Applications , Movement Disorders/diagnosis , Parkinson Disease/diagnosis , Smartphone , Telemedicine/methods , Diagnosis, Computer-Assisted/instrumentation , Female , Humans , Male , Middle Aged , Movement Disorders/etiology , Movement Disorders/physiopathology , Parkinson Disease/complications , Parkinson Disease/physiopathology , Reproducibility of Results , Sensitivity and Specificity , Telemedicine/instrumentation , Word Processing/instrumentationABSTRACT
Paramyotonia congenita (OMIM 168300) is a non-dystrophic myopathy caused by mutations in the SCN4A gene that sometimes can be confused with myotonia congenita. Another disease also caused by mutations in the gene SCN4A is called myotonia aggravated by potassium (OMIM 170500, 613345). It is estimated that more than 20% of patients with suspected myotonia congenita suffer paramyotonia congenita. The two related SCN4A phenotypes exhibit an autosomal dominant inheritance and are the result of mutations that cause an increase in the function of the protein coded by this gene. In this study we present a case of paramyotonia congenita in a family with several affected members and in which a mutation in the SCN4A gene was identified. Evolutionary conservation data and predictive algorithms of pathogenicity allow us to conclude that this DNA variant is the cause of the disease in this family.