Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Adv ; 10(30): eadn6129, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047101

ABSTRACT

Locomotive soft robots (SoRos) have gained prominence due to their adaptability. Traditional locomotive SoRo design is based on limb structures inspired by biological organisms and requires human intervention. Evolutionary robotics, designed using evolutionary algorithms (EAs), have shown potential for automatic design. However, EA-based methods face the challenge of high computational cost when considering multiphysics in locomotion, including materials, actuations, and interactions with environments. Here, we present a design approach for pneumatic SoRos that integrates gradient-based topology optimization with multiphysics material point method (MPM) simulations. This approach starts with a simple initial shape (a cube with a central cavity). The topology optimization with MPM then automatically and iteratively designs the SoRo shape. We design two SoRos, one for walking and one for climbing. These SoRos are 3D printed and exhibit the same locomotion features as in the simulations. This study presents an efficient strategy for designing SoRos, demonstrating that a purely mathematical process can produce limb-like structures seen in biological organisms.

2.
Sci Adv ; 9(6): eade4381, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36763653

ABSTRACT

Turing patterns are self-organizing stripes or spots widely found in biological systems and nature. Although inspiring, their applications are limited. Inflatable shape-morphing structures have attracted substantial research attention. Traditional inflatable structures use isotropic materials with geometrical features to achieve shape morphing. Recently, gradient-based optimization methods have been used to design these structures. These methods assume anisotropic materials whose orientation can vary freely. However, this assumption makes fabrication a considerable challenge by methods such as additive manufacturing, which print isotropic materials. Here, we present a methodology of using Turing patterns to bridge this gap. Specifically, we use Turing patterns to convert a design with distributed anisotropic materials to a distribution with two materials, which can be fabricated by grayscale digital light processing 3D printing. This work suggests that it is possible to apply patterns in biological systems and nature to engineering composites and offers new concepts for future material design.

3.
Nat Commun ; 14(1): 5519, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684245

ABSTRACT

Shape-morphing structures that can reconfigure their shape to adapt to diverse tasks are highly desirable for intelligent machines in many interdisciplinary fields. Shape memory polymers are one of the most widely used stimuli-responsive materials, especially in 3D/4D printing, for fabricating shape-morphing systems. They typically go through a hot-programming step to obtain the shape-morphing capability, which possesses limited freedom of reconfigurability. Cold-programming, which directly deforms the structure into a temporary shape without increasing the temperature, is simple and more versatile but has stringent requirements on material properties. Here, we introduce grayscale digital light processing (g-DLP) based 3D printing as a simple and effective platform for fabricating shape-morphing structures with cold-programming capabilities. With the multimaterial-like printing capability of g-DLP, we develop heterogeneous hinge modules that can be cold-programmed by simply stretching at room temperature. Different configurations can be encoded during 3D printing with the variable distribution and direction of the modular-designed hinges. The hinge module allows controllable independent morphing enabled by cold programming. By leveraging the multimaterial-like printing capability, multi-shape morphing structures are presented. The g-DLP printing with cold-programming morphing strategy demonstrates enormous potential in the design and fabrication of shape-morphing structures.

4.
Sci Adv ; 9(40): eadi2958, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37792949

ABSTRACT

Transparent silica glass is one of the most essential materials used in society and industry, owing to its exceptional optical, thermal, and chemical properties. However, glass is extremely difficult to shape, especially into complex and miniaturized structures. Recent advances in three-dimensional (3D) printing have allowed for the creation of glass structures, but these methods involve time-consuming and high-temperature processes. Here, we report a photochemistry-based strategy for making glass structures of micrometer size under mild conditions. Our technique uses a photocurable polydimethylsiloxane resin that is 3D printed into complex structures and converted to silica glass via deep ultraviolet (DUV) irradiation in an ozone environment. The unique DUV-ozone conversion process for silica microstructures is low temperature (~220°C) and fast (<5 hours). The printed silica glass is highly transparent with smooth surface, comparable to commercial fused silica glass. This work enables the creation of arbitrary structures in silica glass through photochemistry and opens opportunities in unexplored territories for glass processing techniques.

5.
Adv Mater ; 35(29): e2300954, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37060583

ABSTRACT

A depolymerizable vitrimer that allows both reprocessability and monomer recovery by a simple and scalable one-pot two-step synthesis of vitrimers from cyclic lactones is reported. Biobased δ-valerolactone with alkyl substituents (δ-lactone) has low ceiling temperature; thus, their ring-opening-polymerized aliphatic polyesters are capable of depolymerizing back to monomers. In this work, the amorphous poly(δ-lactone) is solidified into an elastomer (i.e., δ-lactone vitrimer) by a vinyl ether cross-linker with dynamic acetal linkages, giving the merits of reprocessing and healing. Thermolysis of the bulk δ-lactone vitrimer at 200 °C can recover 85-90 wt% of the material, allowing reuse without losing value and achieving a successful closed-loop life cycle. It further demonstrates that the new vitrimer has excellent properties, with the potential to serve as a biobased and sustainable replacement of conventional soft elastomers for various applications such as lenses, mold materials, soft robots, and microfluidic devices.

6.
Adv Mater ; 34(39): e2204890, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35962737

ABSTRACT

Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.

7.
Adv Mater ; 33(30): e2102113, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34146361

ABSTRACT

Shape-morphing magnetic soft materials, composed of magnetic particles in a soft polymer matrix, can transform shape reversibly, remotely, and rapidly, finding diverse applications in actuators, soft robotics, and biomedical devices. To achieve on-demand and sophisticated shape morphing, the manufacture of structures with complex geometry and magnetization distribution is highly desired. Here, a magnetic dynamic polymer (MDP) composite composed of hard-magnetic microparticles in a dynamic polymer network with thermally responsive reversible linkages, which permits functionalities including targeted welding for magnetic-assisted assembly, magnetization reprogramming, and permanent structural reconfiguration, is reported. These functions not only provide highly desirable structural and material programmability and reprogrammability but also enable the manufacturing of functional soft architected materials such as 3D kirigami with complex magnetization distribution. The welding of magnetic-assisted modular assembly can be further combined with magnetization reprogramming and permanent reshaping capabilities for programmable and reconfigurable architectures and morphing structures. The reported MDP are anticipated to provide a new paradigm for the design and manufacture of future multifunctional assemblies and reconfigurable morphing architectures and devices.

8.
Adv Mater ; 32(4): e1906657, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31814185

ABSTRACT

Shape-programmable soft materials that exhibit integrated multifunctional shape manipulations, including reprogrammable, untethered, fast, and reversible shape transformation and locking, are highly desirable for a plethora of applications, including soft robotics, morphing structures, and biomedical devices. Despite recent progress, it remains challenging to achieve multiple shape manipulations in one material system. Here, a novel magnetic shape memory polymer composite is reported to achieve this. The composite consists of two types of magnetic particles in an amorphous shape memory polymer matrix. The matrix softens via magnetic inductive heating of low-coercivity particles, and high-remanence particles with reprogrammable magnetization profiles drive the rapid and reversible shape change under actuation magnetic fields. Once cooled, the actuated shape can be locked. Additionally, varying the particle loadings for heating enables sequential actuation. The integrated multifunctional shape manipulations are further exploited for applications including soft magnetic grippers with large grabbing force, reconfigurable antennas, and sequential logic for computing.

SELECTION OF CITATIONS
SEARCH DETAIL