Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Commun Signal ; 20(1): 53, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428325

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) downregulation in skeletal muscle contributes to insulin resistance and type 2 diabetes mellitus. Here, we examined the effects of endoplasmic reticulum (ER) stress on PGC-1α levels in muscle and the potential mechanisms involved. METHODS: The human skeletal muscle cell line LHCN-M2 and mice exposed to different inducers of ER stress were used. RESULTS: Palmitate- or tunicamycin-induced ER stress resulted in PGC-1α downregulation and enhanced expression of activating transcription factor 4 (ATF4) in human myotubes and mouse skeletal muscle. Overexpression of ATF4 decreased basal PCG-1α expression, whereas ATF4 knockdown abrogated the reduction of PCG-1α caused by tunicamycin in myotubes. ER stress induction also activated mammalian target of rapamycin (mTOR) in myotubes and reduced the nuclear levels of cAMP response element-binding protein (CREB)-regulated transcription co-activator 2 (CRTC2), a positive modulator of PGC-1α transcription. The mTOR inhibitor torin 1 restored PCG-1α and CRTC2 protein levels. Moreover, siRNA against S6 kinase, an mTORC1 downstream target, prevented the reduction in the expression of CRTC2 and PGC-1α caused by the ER stressor tunicamycin. CONCLUSIONS: Collectively, these findings demonstrate that ATF4 and the mTOR-CRTC2 axis regulates PGC-1α transcription under ER stress conditions in skeletal muscle, suggesting that its inhibition might be a therapeutic target for insulin resistant states. Video Abstract.


Subject(s)
Activating Transcription Factor 4 , Diabetes Mellitus, Type 2 , Endoplasmic Reticulum Stress , Muscle, Skeletal , TOR Serine-Threonine Kinases , Transcription Factors , Activating Transcription Factor 4/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Down-Regulation , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Tunicamycin/metabolism , Tunicamycin/pharmacology
2.
Int J Mol Sci ; 19(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558390

ABSTRACT

Research in recent years on peroxisome proliferator-activated receptor (PPAR)ß/δ indicates that it plays a key role in the maintenance of energy homeostasis, both at the cellular level and within the organism as a whole. PPARß/δ activation might help prevent the development of metabolic disorders, including obesity, dyslipidaemia, type 2 diabetes mellitus and non-alcoholic fatty liver disease. This review highlights research findings on the PPARß/δ regulation of energy metabolism and the development of diseases related to altered cellular and body metabolism. It also describes the potential of the pharmacological activation of PPARß/δ as a treatment for human metabolic disorders.


Subject(s)
Metabolic Diseases/genetics , PPAR delta/agonists , PPAR-beta/agonists , Animals , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Molecular Targeted Therapy/methods , PPAR delta/genetics , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism
3.
Trends Pharmacol Sci ; 44(7): 457-473, 2023 07.
Article in English | MEDLINE | ID: mdl-37188578

ABSTRACT

Metformin is the most prescribed drug for the treatment of type 2 diabetes mellitus (T2DM), but its mechanism of action has not yet been completely elucidated. Classically, the liver has been considered the major site of action of metformin. However, over the past few years, advances have unveiled the gut as an additional important target of metformin, which contributes to its glucose-lowering effect through new mechanisms of action. A better understanding of the mechanistic details of metformin action in the gut and the liver and its relevance in patients remains the challenge of present and future research and may impact drug development for the treatment of T2DM. Here, we offer a critical analysis of the current status of metformin-driven multiorgan glucose-lowering effects.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Liver , Glucose
4.
Biomed Pharmacother ; 167: 115623, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783154

ABSTRACT

Elafibranor is a dual peroxisome proliferator-activated receptor (PPAR)α and ß/δ agonist that has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we examined the effects of elafibranor in mice fed a choline-deficient high-fat diet (CD-HFD), a model of metabolic dysfunction-associated steatohepatitis (MASH) that presents obesity and insulin resistance. Our findings revealed that elafibranor treatment ameliorated steatosis, inflammation, and fibrogenesis in the livers of CD-HFD-fed mice. Unexpectedly, elafibranor also increased the levels of the epithelial-mesenchymal transition (EMT)-promoting protein S100A4 via PPARß/δ activation. The increase in S100A4 protein levels caused by elafibranor was accompanied by changes in the levels of markers associated with the EMT program. The S100A4 induction caused by elafibranor was confirmed in the BRL-3A rat liver cells and a mouse primary hepatocyte culture. Furthermore, elafibranor reduced the levels of ASB2, a protein that promotes S100A4 degradation, while ASB2 overexpression prevented the stimulating effect of elafibranor on S100A4. Collectively, these findings reveal an unexpected hepatic effect of elafibranor on increasing S100A4 and promoting the EMT program.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR delta , PPAR-beta , Animals , Mice , Rats , Diet, High-Fat , Epithelial-Mesenchymal Transition , Liver , Non-alcoholic Fatty Liver Disease/metabolism , PPAR delta/metabolism , PPAR-beta/agonists , PPAR-beta/metabolism , PPAR-beta/therapeutic use
5.
BMC Biochem ; 12: 57, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22054094

ABSTRACT

BACKGROUND: PPP1R6 is a protein phosphatase 1 glycogen-targeting subunit (PP1-GTS) abundant in skeletal muscle with an undefined metabolic control role. Here PPP1R6 effects on myotube glycogen metabolism, particle size and subcellular distribution are examined and compared with PPP1R3C/PTG and PPP1R3A/G(M). RESULTS: PPP1R6 overexpression activates glycogen synthase (GS), reduces its phosphorylation at Ser-641/0 and increases the extracted and cytochemically-stained glycogen content, less than PTG but more than G(M). PPP1R6 does not change glycogen phosphorylase activity. All tested PP1-GTS-cells have more glycogen particles than controls as found by electron microscopy of myotube sections. Glycogen particle size is distributed for all cell-types in a continuous range, but PPP1R6 forms smaller particles (mean diameter 14.4 nm) than PTG (36.9 nm) and G(M) (28.3 nm) or those in control cells (29.2 nm). Both PPP1R6- and G(M)-derived glycogen particles are in cytosol associated with cellular structures; PTG-derived glycogen is found in membrane- and organelle-devoid cytosolic glycogen-rich areas; and glycogen particles are dispersed in the cytosol in control cells. A tagged PPP1R6 protein at the C-terminus with EGFP shows a diffuse cytosol pattern in glucose-replete and -depleted cells and a punctuate pattern surrounding the nucleus in glucose-depleted cells, which colocates with RFP tagged with the Golgi targeting domain of ß-1,4-galactosyltransferase, according to a computational prediction for PPP1R6 Golgi location. CONCLUSIONS: PPP1R6 exerts a powerful glycogenic effect in cultured muscle cells, more than G(M) and less than PTG. PPP1R6 protein translocates from a Golgi to cytosolic location in response to glucose. The molecular size and subcellular location of myotube glycogen particles is determined by the PPP1R6, PTG and G(M) scaffolding.


Subject(s)
Carrier Proteins/metabolism , ErbB Receptors/metabolism , Glycogen/metabolism , Glycogen/ultrastructure , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Animals , Carrier Proteins/genetics , Cytosol/metabolism , ErbB Receptors/genetics , Gene Expression Regulation , Glycogen/biosynthesis , Glycogen Phosphorylase/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Mice , Microfilament Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/cytology , Muscle, Skeletal/ultrastructure , Nerve Tissue Proteins/genetics , Phosphoprotein Phosphatases/genetics , Phosphorylation , Signal Transduction
6.
Biochem J ; 405(1): 107-13, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17555403

ABSTRACT

Glycogen-targeting PP1 (protein phosphatase 1) subunit G(L) (coded for by the PPP1R3B gene) is expressed in human, but not rodent, skeletal muscle. Its effects on muscle glycogen metabolism are unknown. We show that G(L) mRNA levels in primary cultured human myotubes are similar to those in freshly excised muscle, unlike subunits G(M) (gene PPP1R3A) or PTG (protein targeting to glycogen; gene PPP1R3C), which decrease strikingly. In cultured myotubes, expression of the genes coding for G(L), G(M) and PTG is not regulated by glucose or insulin. Overexpression of G(L) activates myotube GS (glycogen synthase), glycogenesis in glucose-replete and -depleted cells and glycogen accumulation. Compared with overexpressed G(M), G(L) has a more potent activating effect on glycogenesis, while marked enhancement of their combined action is only observed in glucose-replete cells. G(L) does not affect GP (glycogen phosphorylase) activity, while co-overexpression with muscle GP impairs G(L) activation of GS in glucose-replete cells. G(L) enhances long-term glycogenesis additively to glucose depletion and insulin, although G(L) does not change the phosphorylation of GSK3 (GS kinase 3) on Ser9 or its upstream regulator kinase Akt/protein kinase B on Ser473, nor its response to insulin. In conclusion, in cultured human myotubes, the G(L) gene is expressed as in muscle tissue and is unresponsive to glucose or insulin, as are G(M) and PTG genes. G(L) activates GS regardless of glucose, does not regulate GP and stimulates glycogenesis in combination with insulin and glucose depletion.


Subject(s)
Glycogen/biosynthesis , Muscle Fibers, Skeletal/enzymology , Muscle, Skeletal , Phosphoprotein Phosphatases/metabolism , Protein Subunits/metabolism , Animals , Cells, Cultured , Glucose/metabolism , Humans , Insulin/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/cytology , Muscle, Skeletal/enzymology , Phosphoprotein Phosphatases/genetics , Protein Phosphatase 1 , Protein Subunits/genetics , Rats
7.
Metabolism ; 83: 177-187, 2018 06.
Article in English | MEDLINE | ID: mdl-29466708

ABSTRACT

BACKGROUND: Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. OBJECTIVES: The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. RESULTS: We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/ß (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. CONCLUSION: GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle.


Subject(s)
Carrier Proteins/physiology , Glycogen/metabolism , Muscle, Skeletal/metabolism , Animals , Cells, Cultured , HEK293 Cells , Humans , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/pathology , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/physiology
8.
Gene ; 384: 145-53, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17052863

ABSTRACT

The present study examined time-dependent changes in the gene expression profile of long-term cultured human myotubes. Microarray transcriptional analysis was performed in a primary culture of differentiated myotubes from one subject over seven weeks. This analysis showed a main gradual fall in genes of the contractile apparatus, and a broad upregulation of genes involved in cell development and growth, followed by stress response and signal transduction. Glucose metabolism was also monitored, but no significant alterations in glucose uptake, oxidation or glycogen storage were observed. Mitochondrial membrane potential, or the amount of membrane lipid peroxides, remained similarly unchanged, nor was lactate dehydrogenase leakage observed. Time-dependent changes in eight genes were validated by real-time RT-PCR in primary cultured myotubes from four subjects, of similar age and isolated after equivalent replication cycles in vitro and differentiated over seven weeks. Insulin-like growth factor-binding protein 2 (IGFBP2), a modulator of the IGF signal, was upregulated. The antiapoptotic gene heat-shock 70-kd protein 2 (HSPA2) was induced, whereas the proapoptotic tumor necrosis factor receptor superfamily, member 25 (WSL-1) was suppressed. A decline in the muscle-specific gene M-cadherin and contraction genes, such as slow-twitch troponin I (TNNI1) and myosin heavy chain 2 (MYH2), myosin light chain 1 (MYL1) and myosin-binding protein H (MYBPH), which are expressed in adult fast-twitch muscle, was shown. In summary, these data demonstrate extensive downregulation of contractile genes and modulation of apoptosis-related genes, in favour of cell survival, during maintenance of cultured human myotubes.


Subject(s)
Apoptosis/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/genetics , Adolescent , Biopsy , Cell Culture Techniques , Cell Survival/genetics , Cells, Cultured , Child , Down-Regulation , Gene Expression Profiling , Glucose/metabolism , Humans , Lipid Metabolism/genetics , Membrane Potential, Mitochondrial , Muscles/cytology , Muscles/pathology , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Time
9.
Mol Metab ; 5(1): 5-18, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26844203

ABSTRACT

OBJECTIVE: Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. METHODS: We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. RESULTS: We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated with BMI and leptin expression. CONCLUSION: Our data establish glycogen mishandling in adipose tissue as a potential key feature of inflammatory-related metabolic stress in human obesity.

10.
Cell Signal ; 25(5): 1318-27, 2013 May.
Article in English | MEDLINE | ID: mdl-23453973

ABSTRACT

Glycogen synthase (GS) is activated by glucose/glycogen depletion in skeletal muscle cells, but the contributing signaling pathways, including the chief GS regulator GSK3, have not been fully defined. The MEK/ERK pathway is known to regulate GSK3 and respond to glucose. The aim of this study was to elucidate the GSK3 and MEK/ERK pathway contribution to GS activation by glucose deprivation in cultured human myotubes. Moreover, we tested the glucose-dependence of GSK3 and MEK/ERK effects on GS and angiotensin (1-7) actions on these pathways. We show that glucose deprivation activated GS, but did not change phospho-GS (Ser640/1), GSK3ß activity or activity-activating phosphorylation of ERK1/2. We then treated glucose-replete and -depleted cells with SB415286, U0126, LY294 and rapamycin to inhibit GSK3, MEK1/2, PI3K and mTOR, respectively. SB415286 activated GS and decreased the relative phospho-GS (Ser640/1) level, more in glucose-depleted than -replete cells. U0126 activated GS and reduced the phospho-GS (Ser640/1) content significantly in glucose-depleted cells, while GSK3ß activity tended to increase. LY294 inactivated GS in glucose-depleted cells only, without affecting relative phospho-GS (Ser640/1) level. Rapamycin had no effect on GS activation. Angiotensin-(1-7) raised phospho-ERK1/2 but not phospho-GSK3ß (Ser9) content, while it inactivated GS and increased GS phosphorylation on Ser640/1, in glucose-replete cells. In glucose-depleted cells, angiotensin-(1-7) effects on ERK1/2 and GS were reverted, while relative phospho-GSK3ß (Ser9) content decreased. In conclusion, activation of GS by glucose deprivation is not due to GS Ser640/1 dephosphorylation, GSK3ß or ERK1/2 regulation in cultured myotubes. However, glucose depletion enhances GS activation/Ser640/1 dephosphorylation due to both GSK3 and MEK/ERK inhibition. Angiotensin-(1-7) inactivates GS in glucose-replete cells in association with ERK1/2 activation, not with GSK3 regulation, and glucose deprivation reverts both hormone effects. Thus, the ERK1/2 pathway negatively regulates GS activity in myotubes, without involving GSK3 regulation, and as a function of the presence of glucose.


Subject(s)
Angiotensin I/pharmacology , Glucose/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Muscle Fibers, Skeletal/drug effects , Peptide Fragments/pharmacology , Aminophenols/pharmacology , Butadienes/pharmacology , Cells, Cultured , Enzyme Activation/drug effects , Humans , Maleimides/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Nitriles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
11.
Exp Gerontol ; 44(6-7): 426-33, 2009.
Article in English | MEDLINE | ID: mdl-19341787

ABSTRACT

Calorie restriction's (CR) effects on age-associated changes in glycogen-metabolizing enzymes were studied in rat soleus (SOL) and tibialis anterior (TA) muscles. Old (24 months) compared to young (6 months) rats maintained ad libitum on a standard diet had reduced glycogen synthase (GS) activity, lower muscle GS protein levels, increased phosphorylation of GS at site 3a with less activation in SOL. Age-associated impairments in GS protein and activation-phosphorylation were also shown in TA. There was an age-associated reduction in glycogen phosphorylase (GP) activity level in SOL, while brain/muscle isoforms (B/M) of GP protein levels were higher. GP activity and protein levels were preserved, but GP was inactivated in TA with age. Glycogen content was unchanged in both muscles. CR did not alter GS or GP activity/protein levels in young rats. CR hindered age-related decreases in GS activity/protein, unrelated to GS mRNA levels, and GS inactivation-phosphorylation; not on GP. In older rats, CR enhanced glycogen accumulation in SOL. Short-term fasting did not recapitulate CR effects in old rats. Thus, the predominant age-associated impairments on skeletal muscle GS and GP activities occur in the oxidative SOL muscle of rats, and CR can attenuate the loss of GS activity/activation and stimulate glycogen accumulation.


Subject(s)
Aging/physiology , Glycogen Phosphorylase/metabolism , Glycogen Synthase/metabolism , Muscle, Skeletal/physiology , Aging/metabolism , Animals , Blotting, Western , Caloric Restriction , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL