Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters

Publication year range
1.
Nature ; 605(7911): 675-680, 2022 05.
Article in English | MEDLINE | ID: mdl-35614250

ABSTRACT

Quantum computers can be protected from noise by encoding the logical quantum information redundantly into multiple qubits using error-correcting codes1,2. When manipulating the logical quantum states, it is imperative that errors caused by imperfect operations do not spread uncontrollably through the quantum register. This requires that all operations on the quantum register obey a fault-tolerant circuit design3-5, which, in general, increases the complexity of the implementation. Here we demonstrate a fault-tolerant universal set of gates on two logical qubits in a trapped-ion quantum computer. In particular, we make use of the recently introduced paradigm of flag fault tolerance, where the absence or presence of dangerous errors is heralded by the use of auxiliary flag qubits6-10. We perform a logical two-qubit controlled-NOT gate between two instances of the seven-qubit colour code11,12, and fault-tolerantly prepare a logical magic state8,13. We then realize a fault-tolerant logical T gate by injecting the magic state by teleportation from one logical qubit onto the other14. We observe the hallmark feature of fault tolerance-a superior performance compared with a non-fault-tolerant implementation. In combination with recently demonstrated repeated quantum error-correction cycles15,16, these results provide a route towards error-corrected universal quantum computation.

2.
Nature ; 603(7902): 604-609, 2022 03.
Article in English | MEDLINE | ID: mdl-35322252

ABSTRACT

Quantum sensors are an established technology that has created new opportunities for precision sensing across the breadth of science. Using entanglement for quantum enhancement will allow us to construct the next generation of sensors that can approach the fundamental limits of precision allowed by quantum physics. However, determining how state-of-the-art sensing platforms may be used to converge to these ultimate limits is an outstanding challenge. Here we merge concepts from the field of quantum information processing with metrology, and successfully implement experimentally a programmable quantum sensor operating close to the fundamental limits imposed by the laws of quantum mechanics. We achieve this by using low-depth, parametrized quantum circuits implementing optimal input states and measurement operators for a sensing task on a trapped-ion experiment. With 26 ions, we approach the fundamental sensing limit up to a factor of 1.45 ± 0.01, outperforming conventional spin-squeezing with a factor of 1.87 ± 0.03. Our approach reduces the number of averages to reach a given Allan deviation by a factor of 1.59 ± 0.06 compared with traditional methods not using entanglement-enabled protocols. We further perform on-device quantum-classical feedback optimization to 'self-calibrate' the programmable quantum sensor with comparable performance. This ability illustrates that this next generation of quantum sensor can be used without previous knowledge of the device or its noise environment.

3.
Nature ; 589(7841): 220-224, 2021 01.
Article in English | MEDLINE | ID: mdl-33442044

ABSTRACT

The development of quantum computing architectures from early designs and current noisy devices to fully fledged quantum computers hinges on achieving fault tolerance using quantum error correction1-4. However, these correction capabilities come with an overhead for performing the necessary fault-tolerant logical operations on logical qubits (qubits that are encoded in ensembles of physical qubits and protected by error-correction codes)5-8. One of the most resource-efficient ways to implement logical operations is lattice surgery9-11, where groups of physical qubits, arranged on lattices, can be merged and split to realize entangling gates and teleport logical information. Here we report the experimental realization of lattice surgery between two qubits protected via a topological error-correction code in a ten-qubit ion-trap quantum information processor. In this system, we can carry out the necessary quantum non-demolition measurements through a series of local and entangling gates, as well as measurements on auxiliary qubits. In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation between them. The demonstration of these operations-fundamental building blocks for quantum computation-through lattice surgery represents a step towards the efficient realization of fault-tolerant quantum computation.

4.
Nature ; 585(7824): 207-210, 2020 09.
Article in English | MEDLINE | ID: mdl-32908267

ABSTRACT

The successful operation of quantum computers relies on protecting qubits from decoherence and noise, which-if uncorrected-will lead to erroneous results. Because these errors accumulate during an algorithm, correcting them is a key requirement for large-scale and fault-tolerant quantum information processors. Besides computational errors, which can be addressed by quantum error correction1-9, the carrier of the information can also be completely lost or the information can leak out of the computational space10-14. It is expected that such loss errors will occur at rates that are comparable to those of computational errors. Here we experimentally implement a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code15,16 in a trapped-ion quantum processor. The key technique used for this correction is a quantum non-demolition measurement performed via an ancillary qubit, which acts as a minimally invasive probe that detects absent qubits while imparting the smallest quantum mechanically possible disturbance to the remaining qubits. Upon detecting qubit loss, a recovery procedure is triggered in real time that maps the logical information onto a new encoding on the remaining qubits. Although the current demonstration is performed in a trapped-ion quantum processor17, the protocol is applicable to other quantum computing architectures and error correcting codes, including leading two- and three-dimensional topological codes. These deterministic methods provide a complete toolbox for the correction of qubit loss that, together with techniques that mitigate computational errors, constitute the building blocks of complete and scalable quantum error correction.

5.
Nature ; 534(7608): 516-9, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27337339

ABSTRACT

Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

6.
Nature ; 470(7335): 486-91, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21350481

ABSTRACT

The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we realize an experimental toolbox for simulating an open quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.

7.
ACS Cent Sci ; 10(4): 882-889, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38680570

ABSTRACT

We present the first hardware implementation of electrostatic interaction energies by using a trapped-ion quantum computer. As test system for our computation, we focus on the reduction of NO to N2O catalyzed by a nitric oxide reductase (NOR). The quantum computer is used to generate an approximate ground state within the NOR active space. To efficiently measure the necessary one-particle density matrices, we incorporate fermionic basis rotations into the quantum circuit without extending the circuit length, laying the groundwork for further efficient measurement routines using factorizations. Measurements in the computational basis are then used as inputs for computing the electrostatic interaction energies on a classical computer. Our experimental results strongly agree with classical noise-less simulations of the same circuits, finding electrostatic interaction energies within chemical accuracy despite hardware noise. This work shows that algorithms tailored to specific observables of interest, such as interaction energies, may require significantly fewer quantum resources than individual ground state energies would require in the straightforward supermolecular approach.

8.
Phys Rev Lett ; 110(18): 180401, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683179

ABSTRACT

When experimental errors are ignored in an experiment, the subsequent analysis of its results becomes questionable. We develop tests to detect systematic errors in quantum experiments where only a finite amount of data is recorded and apply these tests to tomographic data taken in an ion trap experiment. We put particular emphasis on quantum state tomography and present three detection methods: the first two employ linear inequalities while the third is based on the generalized likelihood ratio.

9.
Phys Rev Lett ; 110(6): 060403, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432222

ABSTRACT

We report on the implementation of a quantum process tomography technique known as direct characterization of quantum dynamics applied on coherent and incoherent single-qubit processes in a system of trapped (40)Ca(+) ions. Using quantum correlations with an ancilla qubit, direct characterization of quantum dynamics reduces substantially the number of experimental configurations required for a full quantum process tomography and all diagonal elements of the process matrix can be estimated with a single setting. With this technique, the system's relaxation times T(1) and T(2) were measured with a single experimental configuration. We further show the first, complete characterization of single-qubit processes using a single generalized measurement realized through multibody correlations with three ancilla qubits.

10.
Phys Rev Lett ; 110(7): 070403, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166354

ABSTRACT

In general, a quantum measurement yields an undetermined answer and alters the system to be consistent with the measurement result. This process maps multiple initial states into a single state and thus cannot be reversed. This has important implications in quantum information processing, where errors can be interpreted as measurements. Therefore, it seems that it is impossible to correct errors in a quantum information processor, but protocols exist that are capable of eliminating them if they affect only part of the system. In this work we present the deterministic reversal of a fully projective measurement on a single particle, enabled by a quantum error-correction protocol in a trapped ion quantum information processor. We further introduce an in-sequence, single-species recooling procedure to counteract the motional heating of the ion string due to the measurement.

11.
Nat Commun ; 14(1): 2242, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37076475

ABSTRACT

Quantum information carriers, just like most physical systems, naturally occupy high-dimensional Hilbert spaces. Instead of restricting them to a two-level subspace, these high-dimensional (qudit) quantum systems are emerging as a powerful resource for the next generation of quantum processors. Yet harnessing the potential of these systems requires efficient ways of generating the desired interaction between them. Here, we experimentally demonstrate an implementation of a native two-qudit entangling gate up to dimension 5 in a trapped-ion system. This is achieved by generalizing a recently proposed light-shift gate mechanism to generate genuine qudit entanglement in a single application of the gate. The gate seamlessly adapts to the local dimension of the system with a calibration overhead that is independent of the dimension.

12.
Nat Phys ; 19(3): 351-357, 2023.
Article in English | MEDLINE | ID: mdl-36942094

ABSTRACT

Entanglement is a fundamental feature of quantum mechanics and holds great promise for enhancing metrology and communications. Much of the focus of quantum metrology so far has been on generating highly entangled quantum states that offer better sensitivity, per resource, than what can be achieved classically. However, to reach the ultimate limits in multi-parameter quantum metrology and quantum information processing tasks, collective measurements, which generate entanglement between multiple copies of the quantum state, are necessary. Here, we experimentally demonstrate theoretically optimal single- and two-copy collective measurements for simultaneously estimating two non-commuting qubit rotations. This allows us to implement quantum-enhanced sensing, for which the metrological gain persists for high levels of decoherence, and to draw fundamental insights about the interpretation of the uncertainty principle. We implement our optimal measurements on superconducting, trapped-ion and photonic systems, providing an indication of how future quantum-enhanced sensing networks may look.

13.
Phys Rev Lett ; 106(13): 130506, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517367

ABSTRACT

We report the creation of Greenberger-Horne-Zeilinger states with up to 14 qubits. By investigating the coherence of up to 8 ions over time, we observe a decay proportional to the square of the number of qubits. The observed decay agrees with a theoretical model which assumes a system affected by correlated, Gaussian phase noise. This model holds for the majority of current experimental systems developed towards quantum computation and quantum metrology.

14.
Nat Commun ; 10(1): 5347, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767840

ABSTRACT

Quantum computers promise to solve certain problems more efficiently than their digital counterparts. A major challenge towards practically useful quantum computing is characterizing and reducing the various errors that accumulate during an algorithm running on large-scale processors. Current characterization techniques are unable to adequately account for the exponentially large set of potential errors, including cross-talk and other correlated noise sources. Here we develop cycle benchmarking, a rigorous and practically scalable protocol for characterizing local and global errors across multi-qubit quantum processors. We experimentally demonstrate its practicality by quantifying such errors in non-entangling and entangling operations on an ion-trap quantum computer with up to 10 qubits, and total process fidelities for multi-qubit entangling gates ranging from [Formula: see text] for 2 qubits to [Formula: see text] for 10 qubits. Furthermore, cycle benchmarking data validates that the error rate per single-qubit gate and per two-qubit coupling does not increase with increasing system size.

15.
Science ; 351(6277): 1068-70, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26941315

ABSTRACT

Certain algorithms for quantum computers are able to outperform their classical counterparts. In 1994, Peter Shor came up with a quantum algorithm that calculates the prime factors of a large number vastly more efficiently than a classical computer. For general scalability of such algorithms, hardware, quantum error correction, and the algorithmic realization itself need to be extensible. Here we present the realization of a scalable Shor algorithm, as proposed by Kitaev. We factor the number 15 by effectively employing and controlling seven qubits and four "cache qubits" and by implementing generalized arithmetic operations, known as modular multipliers. This algorithm has been realized scalably within an ion-trap quantum computer and returns the correct factors with a confidence level exceeding 99%.

16.
Science ; 332(6033): 1059-61, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21617070

ABSTRACT

The computational potential of a quantum processor can only be unleashed if errors during a quantum computation can be controlled and corrected for. Quantum error correction works if imperfections of quantum gate operations and measurements are below a certain threshold and corrections can be applied repeatedly. We implement multiple quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions. Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are realized, and the behavior of the algorithm for different noise environments is analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL