Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Biochem Biophys Res Commun ; 681: 186-193, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37783116

ABSTRACT

Primary cilia are essential cellular antennae that transmit external signals into intracellular responses. These sensory organelles perform crucial tasks in triggering intracellular signaling pathways, including those initiated by G protein-coupled receptors (GPCRs). Given the involvement of GPCRs in serum-induced signaling, we investigated the contribution of ciliary proteins in mitogen perception and cell proliferation. We found that depletion of cilia via IFT88 silencing impaired cell growth and repressed YAP activation against serum and its mitogenic constituents, namely lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). To identify the key player of serum mitogen signaling, a mutant cell line library with 30 ablated individual ciliary proteins was established and screened based on YAP dephosphorylation and target gene induction. While 9 of them had altered signaling, ablation of IFT38 or IFT144 led to a particularly robust repression of YAP activation upon LPA and S1P. The deficiency of IFT38 and IFT144 attenuated cell proliferation, as corroborated in either 2-dimensional cultures or tumor spheroids. In subcutaneous skin melanoma patients, expression of IFT38 and IFT144 was associated with unfavorable outcomes in overall survival. In conclusion, our study demonstrates the involvement of ciliary proteins in mitogen signaling and identifies the regulatory roles of IFT38 and IFT144 in serum-mediated Hippo pathway signaling and cellular growth.


Subject(s)
Mitogens , Signal Transduction , Humans , Cell Line , Cell Proliferation , Lysophospholipids/pharmacology , Receptors, G-Protein-Coupled/metabolism
2.
Ecotoxicol Environ Saf ; 260: 115061, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37257343

ABSTRACT

The widely used plasticizer bisphenol A (BPA) is known as an endocrine-disrupting chemical (EDC). Many studies have shown that BPA contributes to diseases involving immune system alterations, but the underlying mechanisms have yet to be elucidated. We previously reported that BPA at concentration of 100 µM caused human B cell death in accordance with an increase in nuclear factor (erythroid-derived 2)-like 2(Nrf2) expression. Autophagy is a cellular process that degraded and recycles cytoplasmic constituents. Here, we investigated whether BPA induces autophagy through Nrf2, which is associated with regulation of B cell death using human WiL2-NS lymphoblast B cells. Then, cell viability was assessed by various assays using trypan blue, MTT or Celltiter glo luminescent substrate and DAPI. When WiL2-NS cells were treated with BPA, cell viability was decreased and LC3 autophagy cargo protein/puncta was increased. BPA-induced autophagy was confirmed by the modification of LC3 puncta formation or autophagy flux turnover with the treatment of hydroxychloroquine(HCQ), NH4Cl and PI3K inhibitors including 3-methyladenine(3-MA), LY294002 and wortmannin. BPA treatment increased the expression of autophagy-related gene(Atg)7 and Beclin1 as well as Nrf2 induced by the production of reactive oxygen species (ROS). The inhibition of autophagy with siAtg7 or siBeclin1 and Nrf2 depletion aggravated BPA-induced cell death. BPA enhanced the bound of Nrf2 to the specific region on Beclin1 and Atg7 promoter. Spleen tyrosine kinase(Syk) activity was enhanced in response to BPA treatment. Bay61-3606, Syk inhibitor, decreased LC3 and the expression of Atg7 and Beclin1, leading to the increase of BPA-induced B cell death. The results suggest that BPA-induced autophagy ameliorates human B cell death through Nrf2-mediated regulation of Atg7 and Beclin1 expression.


Subject(s)
NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , Humans , Beclin-1 , NF-E2-Related Factor 2/metabolism , Autophagy , Cell Death , Autophagy-Related Protein 7
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498831

ABSTRACT

The primary cilium (PC) is a microtubule-based antenna-like organelle projecting from the surface of the cell membrane. We previously reported that PC formation could be regulated by nephronophthisis 3 (NPHP3) expression followed by its interaction with thymosin ß4. Here, we investigated whether cancer cell viability is regulated by NPHP3-mediated PC formation. The total and viable cell number were reduced by incubating cells under serum deprivation (SD) without fetal bovine serum (-FBS). PC frequency was increased by SD which enhanced NPHP3 expression and hypoxia inducible factor (HIF)-1α. The role of HIF-1α on NPHP3 expression and PC formation was confirmed by the binding of HIF-1α to the NPHP3 promoter and siRNA-based inhibition of HIF-1α (siHIF-1α), respectively. HIF-1α-stabilizing dimethyloxallyl glycine (DMOG) and hypoxic conditions increased NPHP3 expression and PC formation. In addition, as SD elevated the reactive oxygen species (ROS), PC frequency and NPHP3 expression were inhibited by a treatment with N-acetylcysteine (NAC), a ROS scavenger. PC formation was increased by H2O2 treatment, which was inhibited by siHIF-1α. The inhibition of ERK with P98059 decreased the frequency of PC formation and NPHP3 expression. Cell viability was reduced by a treatment with ciliobrevin A (CilioA) to inhibit PC formation, which was re-affirmed by using PC-deficient IFT88-/- cells. Taken together, the results imply that PC formation in cancer cells could be controlled by NPHP3 expression through ROS-induced HIF-1α and ERK activation under SD conditions. It suggests that cancer cell viability under SD conditions could be maintained by NPHP3 expression to regulate PC formation.


Subject(s)
Cilia , Hypoxia-Inducible Factor 1, alpha Subunit , Kinesins , Female , Humans , Cell Hypoxia , Cilia/metabolism , HeLa Cells , Hydrogen Peroxide/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Reactive Oxygen Species/metabolism , Kinesins/genetics , Kinesins/metabolism
4.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33468581

ABSTRACT

Thymosin beta-4 (Tß4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tß4-overexpressing transgenic (Tg) mice to investigate the role of Tß4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tß4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tß4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tß4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tß4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1ß and TNF-α proteins was also reduced in Tß4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tß4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tß4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tß4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tß4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.


Subject(s)
Disease Resistance/genetics , Ectopic Gene Expression , Legionella pneumophila/physiology , Legionnaires' Disease/genetics , Legionnaires' Disease/microbiology , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/microbiology , Thymosin/genetics , Animals , Cytokines/metabolism , Disease Models, Animal , Host-Pathogen Interactions/genetics , Humans , Immunohistochemistry , Immunophenotyping , Legionnaires' Disease/pathology , Ligands , Male , Mice , Mice, Transgenic , Pneumonia, Bacterial/pathology , Sepsis/genetics , Sepsis/microbiology , Sepsis/pathology , Toll-Like Receptors/metabolism
5.
Int J Med Sci ; 18(5): 1247-1258, 2021.
Article in English | MEDLINE | ID: mdl-33526986

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) that is one of the most commonly used phthalates in manufacturing plastic wares regulates tumorigenesis. Thymosin beta-4 (TB4), an actin-sequestering protein, has been reported as a novel regulator to form primary cilia that are antenna-like organelles playing a role in various physiological homeostasis and pathological development including tumorigenesis. Here, we investigated whether DEHP affects tumor growth via primary cilium (PC) formation via the axis of TB4 gene expression and the production of reactive oxygen species (ROS). Tumor growth was increased by DEHP treatment that enhanced TB4 expression, PC formation and ROS production. The number of cells with primary cilia was enhanced time-dependently higher in HeLa cells incubated in the culture medium with 0.1% fetal bovine serum (FBS). The number of cells with primary cilia was decreased by the inhibition of TB4 expression. The incubation of cells with 0.1% FBS enhanced ROS production and the transcriptional activity of TB4 that was reduced by ciliobrevin A (CilioA), the inhibitor of ciliogenesis. ROS production was decreased by catalase treatment but not by mito-TEMPO, which affected to PC formation with the same trend. H2O2 production was reduced by siRNA-based inhibition of TB4 expression. H2O2 also increased the number of ciliated cells, which was reduced by siRNA-TB4 or the co-incubation with CilioA. Tumor cell viability was maintained by ciliogenesis, which was correlated with the changes of intracellular ATP amount rather than a simple mitochondrial enzyme activity. TB4 overexpression enhanced PC formation and DEHP-induced tumor growth. Taken together, data demonstrate that DEHP-induced tumor growth might be controlled by PC formation via TB4-H2O2 axis. Therefore, it suggests that TB4 could be a novel bio-marker to expect the risk of DEHP on tumor growth.


Subject(s)
Diethylhexyl Phthalate/toxicity , Hydrogen Peroxide/metabolism , Melanoma, Experimental/pathology , Plasticizers/toxicity , Skin Neoplasms/pathology , Thymosin/metabolism , Animals , Carcinogenesis/chemically induced , Carcinogenesis/pathology , Cell Survival/drug effects , Cilia/drug effects , Cilia/metabolism , Diethylhexyl Phthalate/administration & dosage , HEK293 Cells , HeLa Cells , Humans , Injections, Intraperitoneal , Male , Melanoma, Experimental/chemically induced , Mice , Plasticizers/administration & dosage , Skin Neoplasms/chemically induced
6.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281218

ABSTRACT

Fibroblast-like synoviocytes (FLSs) play a key role in the pathogenesis of rheumatoid arthritis (RA) by producing inflammatory cytokines and interacting with various immune cells, which contribute to cartilage destruction. RA-FLSs activated by tumor necrosis factor alpha (TNF-α), exacerbate joint damage by triggering the expression of various inflammatory molecules, including human vascular cell adhesion molecule-1 (hVCAM1) and B cell-activating factor (hBAFF), with a role in maturation and maintenance of B cells. Here, we investigated whether B cell interaction with FLSs could be associated with hVCAM1 expression by TNF-α through hBAFF, using WiL2-NS B cells and MH7A synovial cells. TNF-α enhanced the expression of hVCAM1 and hBAFF. B cell adhesion to FLSs was increased by treatment with TNF-α or hBAFF protein. hVCAM expression was up-regulated by transcriptional activation of the hVCAM1 promoter(-1549 to -54) in MH7A cells treated with hBAFF protein or overexpressed with hBAFF gene. In contrast, hVCAM1 expression was down-regulated by treatment with hBAFF-siRNA. JNK was activated by TNF-α treatment. Then, hVCAM1 expression and B cell adhesion to FLSs were reduced by the treatment with JNK inhibitor SP600125. Transcriptional activity of hVCAM1 by the stimulation with TNF-α was inhibited by the deletion of -1549 to -229 from the hVCAM1 promoter. hVCAM1 expression and B cell adhesion to FLSs were reduced by treatment with hVCAM1-siRNA. Taken together, these results suggest that B cell adhesion to FLSs is associated with TNF-α-induced up-regulation of hVCAM1 expression via hBAFF expression. Thus, the pathological progression of RA may be associated with hVCAM1-mediated interaction of synovial cells with B lymphocytes.


Subject(s)
B-Cell Activating Factor/metabolism , B-Lymphocytes/physiology , Synoviocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Cell Adhesion , Cell Line , Humans , MAP Kinase Kinase 4/metabolism , Phosphorylation
7.
Int J Mol Sci ; 21(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731326

ABSTRACT

Skin hyperpigmentation is generally characterized by increased synthesis and deposition of melanin in the skin. UP256, containing bakuchiol, is a well-known medication for acne vulgaris. Acne sometimes leaves dark spots on the skin, and we hypothesized that UP256 may be effective against hyperpigmentation-associated diseases. UP256 was treated for anti-melanogenesis and melanocyte dendrite formation in cultured normal human epidermal melanocytes as well as in the reconstituted skin and zebrafish models. Western blot analysis and glutathione S-transferase (GST)-pull down assays were used to evaluate the expression and interaction of enzymes related in melanin synthesis and transportation. The cellular tyrosinase activity and melanin content assay revealed that UP256 decreased melanin synthesis by regulating the expression of proteins related on melanogenesis including tyrosinase, TRP-1 and -2, and SOX9. UP256 also decreased dendrite formation in melanocytes via regulating the Rac/Cdc42/α-PAK signaling proteins, without cytotoxic effects. UP256 also inhibited ciliogenesis-dependent melanogenesis in normal human epidermal melanocytes. Furthermore, UP256 suppressed melanin contents in the zebrafish and the 3D human skin tissue model. All things taken together, UP256 inhibits melanin synthesis, dendrite formation, and primary cilium formation leading to the inhibition of melanogenesis.


Subject(s)
Cilia/enzymology , Gene Expression Regulation, Enzymologic , Hyperpigmentation/enzymology , Melanocytes/enzymology , Monophenol Monooxygenase/biosynthesis , Signal Transduction , Up-Regulation , Zebrafish Proteins/biosynthesis , Zebrafish/metabolism , Animals , Cell Line , Cilia/pathology , Dendrites/enzymology , Dendrites/pathology , Humans , Hyperpigmentation/drug therapy , Hyperpigmentation/pathology , SOX9 Transcription Factor/metabolism , Trypsin/metabolism
8.
Environ Toxicol ; 32(6): 1679-1687, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28168795

ABSTRACT

Nonylphenol (NP) is a well-known endocrine disruptor that influences sexual and reproductive development. Here, we investigated whether NP affects immune responses that are associated with tumor initiation and progression. When spleen cells were incubated with lipopolysaccharide (LPS) and concanavalin A in the presence of 10-4 M NP, the proliferation of B and T lymphocytes was reduced compared with that in controls, in a gender-independent fashion. While 10-4 M NP also decreased the production of nitric oxide (NO) in LPS-stimulated bone marrow-derived macrophages (BMDMs), no changes in NO production were detected following treatment with 10-5 M NP. LPS-stimulated expression of iNOS, COX2, IL-6 and TNF-α in BMDMs was reduced after 6 or 18 hours of incubation with 10-5 M NP. Furthermore, when mice were pre-exposed to NP for 7 days prior to the injection of B16F10 melanoma cells, the rates of tumor nodule formation and relative tumor growth were higher than those in the control group. In vivo immunosuppressive effect was also clarified by the inhibition of proliferation in B/T lymphocyte and cytokine production in peritoneal macrophages from the mice pretreated with NP for 7 days. Taken together, these data demonstrate that NP could affect the immune responses of lymphocytes and macrophages, leading to the suppression of their tumor-preventing ability. This suggests that individuals at high risk for tumor development should avoid frequent exposure to NP and other endocrine disruptors.


Subject(s)
Endocrine Disruptors/toxicity , Lymphocytes/immunology , Macrophage Activation/drug effects , Macrophages, Peritoneal/drug effects , Melanoma, Experimental/chemically induced , Phenols/toxicity , Animals , B-Lymphocytes/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Concanavalin A/immunology , Interleukin-6/metabolism , Lipopolysaccharides/immunology , Lymphocyte Activation/drug effects , Lymphocytes/drug effects , Macrophages, Peritoneal/immunology , Male , Melanoma, Experimental/immunology , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Spleen/cytology , Spleen/drug effects , T-Lymphocytes/drug effects , Tumor Necrosis Factor-alpha/metabolism
9.
Wound Repair Regen ; 24(5): 786-794, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27283994

ABSTRACT

Skin cell regeneration and wound healing are key processes in the recovery from skin injuries. Rapid cell migration and regeneration of skin cells lead to faster and better healing of wounded skin. In the present study, we aimed to investigate the wound healing potential of juglone, a naturally occurring Pin1 inhibitor found in walnuts. Cultured skin cells (NHDF and HaCaT) and hairless mice were treated with juglone after wound creation to examine its effects on cell migration and wound healing rate. The expressions of cell migration related proteins (Rac1, Cdc42, and α-PAK), collagen deposition, and angiogenesis were analyzed. Juglone treatment resulted in faster rate of growth and migration and recovered cell morphology, particularly at a concentration of 5 µM, in skin cells compared to the untreated group. In vivo experiments showed that mice treated with juglone showed faster wound healing rate with better skin morphology and collagen deposition than the vehicle group. Furthermore, juglone increased the activation and/or expression of Cdc42, Rac1, and α-pak in HaCaT cells, and resulted in enhanced angiogenesis in endothelial cells (HUVECs). Juglone also activated MAPKs signaling by activation of ERK, JNK, and p38 proteins. Taken together, these data suggest that juglone may be a potential candidate for wound healing and skin regeneration which ameliorates wound healing mainly by promoting skin cell migration through Rac1/Cdc42/PAK pathway.

10.
Environ Toxicol ; 31(12): 2081-2089, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27570978

ABSTRACT

Nonylphenol (NP) as well-known "endocrine disrupter" influences sexual and reproductive development. Here, we investigated the effect of NP on M1-/M2-type macrophages and their role in lipopolysaccharide (LPS)-induced sepsis. Polarized macrophages of M1- and M2-types were obtained by the treatment with LPS and interleukin-4 (IL-4) to bone marrow-derived macrophages (BMDM), respectively. Coincubation of M1-macrophages with NP decreased COX-2, iNOS, IL-6, and TNF-α expression but no changes were detected in the production of nitric oxide (NO). Survival probability of LPS-induced sepsis mice was enhanced by the injection of NP-treated BMDM as compared to the injection of NP-untreated control BMDM. In the meanwhile, the expression of arginase 1(Arg1), a marker for M2-polarized macrophages was increased by the stimulation with LPS in BMDM. Arg1 expression was also enhanced by the treatment with IL-4 in BMDM, which was reduced by the coincubation with NP. Survival probability of LPS-induced sepsis mice was decreased by the injection of BMDM treated with IL-4 and NP as compared to the injection of IL-4-treated BMDM. It suggests that NP might inhibit macrophage function and the polarization to M2-macrophages. Taken together, data demonstrate that NP could differently affect immune responses of polarized macrophages resulted in the modulation of LPS-induced sepsis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2081-2089, 2016.


Subject(s)
Bone Marrow Cells/drug effects , Endocrine Disruptors/toxicity , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Phenols/toxicity , Sepsis/immunology , Animals , Arginase/metabolism , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cell Polarity , Cyclooxygenase 2/metabolism , Interleukin-4/pharmacology , Interleukin-6/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , Sepsis/metabolism , Sepsis/pathology , Tumor Necrosis Factor-alpha/metabolism
11.
Carcinogenesis ; 36 Suppl 1: S232-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106141

ABSTRACT

An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.


Subject(s)
Carcinogens, Environmental/adverse effects , Environmental Exposure/adverse effects , Inflammation/chemically induced , Inflammation/immunology , Neoplasms/chemically induced , Neoplasms/immunology , Animals , Carcinogenesis/chemically induced , Carcinogenesis/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , Neoplasms/etiology , Risk
12.
Carcinogenesis ; 36 Suppl 1: S254-96, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106142

ABSTRACT

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.


Subject(s)
Carcinogenesis/chemically induced , Carcinogens, Environmental/adverse effects , Environmental Exposure/adverse effects , Hazardous Substances/adverse effects , Neoplasms/chemically induced , Neoplasms/etiology , Animals , Humans
13.
Biochem Biophys Res Commun ; 467(4): 638-44, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26499075

ABSTRACT

Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Flavonoids/pharmacology , Sirtuin 1/metabolism , 3T3-L1 Cells , Acetylation , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cell Differentiation/drug effects , Flavonols , Forkhead Box Protein O1 , Forkhead Transcription Factors/metabolism , Lipid Metabolism , Mice , PPAR gamma/metabolism
14.
BMB Rep ; 57(6): 299-304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835116

ABSTRACT

Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activationmediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells. [BMB Reports 2024; 57(6): 299-304].


Subject(s)
Antigens, Neoplasm , Melanoma , Promoter Regions, Genetic , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Cell Line, Tumor , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Neoplastic , Etoposide/pharmacology , Histone Deacetylase 1/metabolism , Down-Regulation/drug effects
16.
J Virol ; 86(24): 13629-41, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23055551

ABSTRACT

Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H(2)O(2) on an antigen-specific CD8(+) T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8(+) T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8(+) T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8(+) T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8(+) T cell pool. During chronic viral infection, increased antigen-specific CD8(+) T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8(+) T cell expansion, secondary memory generation, and immunopathology.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Peroxiredoxins/physiology , Animals , Blotting, Western , Cell Proliferation , Mice , Mice, Transgenic , Peroxiredoxins/genetics , Real-Time Polymerase Chain Reaction
17.
Cell Biol Toxicol ; 29(5): 365-80, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24026251

ABSTRACT

Ethanol exposure has deleterious effects on the central nervous system. Although several mechanisms for ethanol-induced damage have been suggested, the precise mechanism underlying ethanol-induced neuronal cell death remains unclear. Recent studies indicate that the p75 neurotrophin receptor (p75NTR) has a critical role in the regulation of neuronal survival. This study was designed to examine the role of p75NTR in ethanol-induced apoptotic signaling in neuroblastoma cells. Ethanol caused highly increased level of p75NTR expression. The use of small interfering RNA to inhibit p75NTR expression markedly attenuated ethanol-induced cell cycle arrest and apoptosis. DNA binding activity of Sp1 was increased by ethanol, whereas inhibition of Sp1 activity by mithramycin, a Sp1 inhibitor, or short hairpin RNA suppressed ethanol-induced p75NTR expression. In addition, inhibitors of casein kinase 2 (CK2) and extracellular signal-regulated kinase (ERK) augmented ethanol-induced p75NTR expression. Our results also demonstrate that inhibition of ERK and CK2 caused a further increase in the activation of the p75NTR proximal promoter induced by ethanol. This increased activation was partially suppressed by the deletion of the Sp1 binding sites. These results suggest that Sp1-mediated p75NTR expression is regulated at least in part by ERK and CK2 pathways. The present study also showed that treatment with ethanol resulted in significant increases in the expression of p21, but not the levels of p53 and p53 target genes such as Bax, Puma, and Bcl-2. Furthermore, the inhibition of p75NTR expression or Sp1 activity suppressed ethanol-induced p21 expression, cell cycle arrest, and apoptosis. These data suggest that ethanol increases p75NTR expression, and CK2 and ERK signaling inversely regulate Sp1-mediated p75NTR expression in ethanol-treated neuroblastoma cells. Thus, our study provides more insight into the mechanisms underlying ethanol actions.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Central Nervous System Depressants/toxicity , Ethanol/toxicity , Nerve Tissue Proteins/genetics , Receptors, Nerve Growth Factor/genetics , Sp1 Transcription Factor/physiology , Alcoholism/pathology , Casein Kinase II/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Nerve Tissue Proteins/metabolism , Neuroblastoma , Neurons/drug effects , Neurons/physiology , Receptors, Nerve Growth Factor/metabolism , Transcriptional Activation/drug effects , Tumor Suppressor Protein p53/metabolism
18.
Biomol Ther (Seoul) ; 31(1): 48-58, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36579460

ABSTRACT

Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.

19.
Int J Cancer ; 131(9): 2067-77, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22328534

ABSTRACT

Thymosin beta-4 (Tß4), actin-sequestering protein, plays important roles in many cellular functions including cancer cell migrations. Glycogen synthase kinase (GSK) in Wnt signaling pathway is a key molecule to control intercellular interaction. Here, we investigated whether GSK-3 activity is regulated by Tß4 and it is associated with Tß4-mediated migration in gastric cancer cells. Various expression level of Tß4 was observed in human gastric tumor tissues. Migration in gastric cancer cells, SNU638 and SNU668, was dependent on a relative expression level of Tß4. Cell migration was higher in SNU668 with a higher expression level of Tß4 than that in SNU638 with a lower Tß4. Although the level of phosphorylated(p)-GSK-3α (inactive), ß-catenin, E-cadherin and E-cadherin:ß-catenin complex was relatively higher, p-GSK-3ß (inactive) was lower in SNU638 compared to those in SNU668 cells. LiCl, GSK-3α/ß inhibitor, reduced lung metastasis of B16F10 mouse melanoma cells and SNU668 cell migration. Small interference (si)RNA of GSK-3α increased SNU638 cell migration in accordance with the reduction of E-cadherin:ß-catenin complex formation through a decrease in ß-catenin and E-cadherin. Expression level of GSK-3α/ß, ß-catenin and E-cadherin in SNU668 and SNU638 was reversed by Tß4-siRNA and by the treatment with acetylated-serine-aspartic acid-lysine-proline (SDKP) tetrapeptide of Tß4, respectively. E-cadherin expression in SNU638 cells was decreased by ß-catenin-siRNA. PD98059, MEK inhibitor, or U0126, ERK inhibitor, reduced SNU668 cell migration accompanying an increase in p-GSK-3α, ß-catenin and E-cadherin. Taken together, data indicated that the expression of GSK-3α, ß-catenin and E-cadherin could be negatively regulated by Tß4-induced ERK phosphorylation. It suggests that Tß4 could be a novel regulator to control Wnt signaling pathways.


Subject(s)
Cadherins/biosynthesis , Glycogen Synthase Kinase 3/metabolism , Stomach Neoplasms/metabolism , Thymosin/metabolism , beta Catenin/biosynthesis , Animals , Butadienes/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Flavonoids/pharmacology , Glycogen Synthase Kinase 3/genetics , Humans , Lithium Chloride/pharmacology , Lung Neoplasms/secondary , Melanoma, Experimental/metabolism , Melanoma, Experimental/secondary , Mice , Mice, Inbred C57BL , Nitriles/pharmacology , Peptides/pharmacology , Phosphorylation , RNA Interference , RNA, Small Interfering , Stomach Neoplasms/pathology , Thymosin/genetics , Wnt Signaling Pathway
20.
Cytokine ; 59(1): 115-23, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22537850

ABSTRACT

BAFF is associated with various immunological diseases. Previously, we have reported that mouse B cell activating factor (mBAFF) expression was dependent on nuclear localization of co-activator, p300 and the activation of transcription factors including NF-κB and CREB. Here, we investigated whether transcription factor, c-Fos, regulates human (h) BAFF expression through promoter activation by PMA-induced reactive oxygen species (ROS) production. We cloned hBAFF promoter into luciferase-expressing pGL3-basic vector. The activity of 1.0 kb hBAFF promoter was higher than that in 0.75, 0.5 or 0.25 kb hBAFF promoter. The existence of three AP-1 binding motifs was computer-analyzed in hBAFF promoter. The stimulation with PMA and ionomycin (IOM) increased 1.0 kb hBAFF promoter activity, time-dependently. PMA/IOM-stimulation rapidly enhanced c-Fos expression in THP-1 human pro-monocytic cells. Binding of c-Fos to hBAFF promoter was detected by chromatin immunoprecipitation (ChIP) assay. hBAFF expression and its promoter activity were decreased by the transfection with small interference (si) RNA of c-Fos. ROS production in THP-1 cells was increased by PMA/IOM-stimulation. In addition, hBAFF activity stimulated by PMA/IOM was reduced by N-acetyl-cysteine (NAC), a well-known ROS scavenger. Serum starvation (0.5% FBS) producing ROS and the exogenous H(2)O(2) treatment also enhanced hBAFF promoter activity. c-Fos expression and AP-1 binding to oligonucleotide were reduced by the treatment with NAC. H(2)O(2) was not able to induce hBAFF expression in the presence of staurosporine, PKC inhibitor. Data suggest that hBAFF expression could be regulated by promoter activation through c-Fos association, which might be dependent on PMA-induced ROS production.


Subject(s)
B-Cell Activating Factor/genetics , Gene Expression Regulation , Monocytes/enzymology , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Animals , B-Cell Activating Factor/metabolism , Base Sequence , COS Cells , Cell Line , Chlorocebus aethiops , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Humans , Ionomycin/pharmacology , Mice , Molecular Sequence Data , Monocytes/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL