Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biochem Mol Toxicol ; 38(3): e23662, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372072

ABSTRACT

Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, is widely used to produce polycarbonate plastics. The widely used BPA has been detected in human urine samples, raising public anxiety about the detrimental effects of BPA on the bladder. In this study, we explored regulatory mechanisms for the adverse effects of BPA in human bladder BdFC and T24 cells. BPA induced extrinsic and intrinsic apoptosis and G2/M cell cycle arrest caused by the ATM-CHK1/CHK2-CDC25c-CDC2 signaling, which ultimately inhibited the growth of human bladder cells. We also found that BPA decreased the binding activity of AP-1 and NF-κB transcription factors in human bladder cells, which inhibited migration and invasion through matrix metallopeptidase-2 and -9 inactivation. Phosphorylation of MAPKs was implicated with BPA-mediated detrimental effects in human bladder cells. Collectively, our results provide a novel explanation for the underlying molecular mechanisms that BPA induces cytotoxicity in human bladder cells.


Subject(s)
Benzhydryl Compounds , Phenols , Transcription Factors , Urinary Bladder , Humans , Phosphorylation , Apoptosis , G2 Phase Cell Cycle Checkpoints , Cell Line, Tumor , Cell Cycle
2.
Article in English | MEDLINE | ID: mdl-37079351

ABSTRACT

A Gram-stain negative, aerobic, rod-shaped and creamy pink-coloured bacterium, designated MAHUQ-68T, was isolated from rhizospheric soil of a jujube tree. Colonies grew at 10-40 °C (optimum, 28 °C), pH 6.0-9.0 (optimum pH, 7.0) and in the presence of 0-1.5 % NaCl (optimum 0-0.5 %). Positive for both catalase and oxidase activity. Strain MAHUQ-68T hydrolysed casein, starch, aesculin and l-tyrosine. Based on the results of phylogenetic analysis using 16S rRNA gene and genome sequences, strain MAHUQ-68T clustered together within the genus Solitalea. The closest members were Solitalea longa HR-AVT (98.8 % sequence similarity), Solitalea canadensis DSM 3403T (96.9 %) and Solitalea koreensis R2A36-4T (94.0 %). The genome of strain MAHUQ-68 T was 4 250 173 bp long with 68 scaffolds and 3 570 protein-coding genes. The genomic DNA G+C content of the type strain was 38.0 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain MAHUQ-68T and its closest relatives were 72.0-81.4% and 19.8-24.3 %, respectively. The major cellular fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The main respiratory quinone was menaquinone-7. The polar lipids comprised phosphatidylethanolamine, an unidentified aminolipid and four unidentified lipids. Based on these data, strain MAHUQ-68T represents a novel species in the genus Solitalea, for which the name Solitalea agri sp. nov. is proposed. The type strain is MAHUQ-68T (=KACC 22249T=CGMCC 1.19062T).


Subject(s)
Fatty Acids , Ziziphus , Fatty Acids/chemistry , Ziziphus/genetics , Soil , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Base Composition , Sequence Analysis, DNA , Soil Microbiology
3.
Ecotoxicol Environ Saf ; 249: 114358, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508820

ABSTRACT

Bisphenol A (BPA) is commonly used to produce epoxy resins and polycarbonate plastics. BPA is an endocrine-disrupting chemical that is leaked from the polymer and absorbed into the body to disrupt the endocrine system. Although BPA may cause cytotoxicity in the prostate, a hormone-dependent reproductive organ, its underlying mechanism has not yet been elucidated. Here, we investigated the effects of BPA on cell proliferation, apoptosis, and the wound healing process using prostate epithelial cells (RWPE-1) and stromal cells (WPMY-1). Observations revealed that BPA induced G2/M cell cycle arrest in both cell types through the ATM-CHK1/CHK2-CDC25c-CDC2 signaling pathway, and the IC50 values were estimated to be 150 µM. Furthermore, BPA was found to induce caspase-dependent apoptosis through initiator (caspase-8 and -9) and executioner (caspase-3 and -7) caspase cascades. In addition, BPA interfered with the wound healing process through inhibition of MMP-2 and - 9 expression, accompanied by reductions in the binding activities of AP-1 as well as NF-κB motifs. Phosphorylation of MAPKs was associated with the BPA-mediated toxicity of prostate cells. These results suggest that BPA exhibits prostate toxicity by inhibiting cell proliferation, inducing apoptosis, and interfering with the wound healing process. Our study provided new insights into the precise molecular mechanisms of BPA-induced toxicity in human prostate cells.


Subject(s)
Apoptosis , Benzhydryl Compounds , Cell Cycle Checkpoints , Matrix Metalloproteinases , Mitogen-Activated Protein Kinase Kinases , Prostate , Wound Healing , Humans , Male , Apoptosis/drug effects , Benzhydryl Compounds/toxicity , Cell Cycle Checkpoints/drug effects , Cell Proliferation , Prostate/cytology , Prostate/drug effects , Transcription Factors/metabolism , Wound Healing/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism
4.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902068

ABSTRACT

Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.


Subject(s)
Antioxidants , Oxidative Stress , Phaeophyceae , Phloroglucinol , Animals , Humans , Mice , Antioxidants/pharmacology , Apoptosis , Cell Line , Heme Oxygenase-1/metabolism , Hydrogen Peroxide/metabolism , Myoblasts/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Phaeophyceae/metabolism , Phloroglucinol/pharmacology , Reactive Oxygen Species/metabolism
5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430959

ABSTRACT

To evaluate the utility of different risk assessments in non-muscle-invasive bladder cancer (NMIBC) patients, a total of 178 NMIBC patients from Chungbuk National University Hospital (CBNUH) were enrolled, and the predictive value of the molecular signature-based subtype predictor (MSP888) and risk calculators based on clinicopathological factors (EORTC, CUETO and 2021 EAU risk scores) was compared. Of the 178 patients, 49 were newly analyzed by the RNA-sequencing, and their MSP888 subtype was evaluated. The ability of the EORTC, MSP888 and two molecular subtyping systems of bladder cancer (Lund and UROMOL subtypes) to predict progression of 460 NMIBC patients from the UROMOL project was assessed. Cox regression analyses showed that the MSP888 was an independent predictor of NMIBC progression in the CBNUH cohort (p = 0.043). Particularly in patients without an intravesical BCG immunotherapy, MSP888 significantly linked with risk of disease recurrence and progression (both p < 0.05). However, the EORTC, CUETO and 2021 EAU risk scores showed disappointing results with respect to estimating the NMIBC prognosis. In the UROMOL cohort, the MSP888, Lund and UROMOL subtypes demonstrated a similar capacity to predict NMIBC progression (all p < 0.05). Conclusively, the MSP888 is favorable for stratifying patients to facilitate optimal treatment.


Subject(s)
Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Invasiveness , Disease Progression , Risk Factors
6.
J Sci Food Agric ; 102(7): 2846-2854, 2022 May.
Article in English | MEDLINE | ID: mdl-34741313

ABSTRACT

BACKGROUND: Persimmon (Diospyros kaki) is a familiar and widespread fruit, cultivated worldwide. To date, physiological and chemical changes in fermented persimmon fruit and its active compounds have been rarely investigated. Moreover, comparative studies on the pharmacological activities of fermented persimmon fruit-derived compounds have not been reported. RESULTS: To investigate the effect of traditional fermented foods on immunostimulatory activity, non-fermented persimmon fruit (D. kaki, DK) and fermented persimmon fruit (fermented D. kaki, FDK) were prepared and further fractionated into low- and high-molecular weight fractions. FDK exhibited significantly higher activity toward the production of macrophage-stimulatory mediators compared with that of DK, and the high-molecular weight fraction (FDK-H) isolated from FDK was shown to have more potent activity than FDK. FDK-H not only increased the expression of immunostimulatory genes (TNF-α, IL-6, IL-12, and iNOS), but also stimulated the phosphorylation of both MAPK (ERK, JNK, and p38) and NF-κB (p65 and IκB) signaling molecules underlying macrophage activation. The putative chemical characteristic of FDK-H was identified as a pectic rhamnogalacturonan (RG) I-rich polysaccharide with a high molecular weight of 304 kDa containing galacturonic acid, arabinose, rhamnose, and galactose as the major monosaccharide units. CONCLUSION: The present study reveals that traditional fermentation is a useful method for increasing the macrophage-immunostimulatory activity of persimmon fruit, and the increased activity may be associated with structural modification of persimmon polysaccharides. This study may serve to identify a functional ingredient as an immunostimulatory agent, and our results may be applied to develop a new immunostimulatory product using FDK-H. © 2021 Society of Chemical Industry.


Subject(s)
Diospyros , Diospyros/chemistry , Fruit/chemistry , Macrophages , NF-kappa B/genetics , Pectins , Polysaccharides/chemistry
7.
Arch Microbiol ; 203(2): 543-548, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32970222

ABSTRACT

A novel bacterial strain, designated MAH-20T, was isolated from a soil sample of a tomato garden. Cells of strain MAH-20T were Gram-stain negative, aerobic, motile, and rod-shaped. The colonies were light brown colored, smooth, spherical, and 0.2-0.7 mm in diameter when grown on Luria-Bertani agar for 2 days. Strain MAH-20T grows at 15-40 °C (optimum growth temperature 30-32 °C), at pH 5.0-10.0 (optimum growth pH 7.0) and at 0-2.0% NaCl. The strain showed positive activity for both oxidase and catalase tests. Cells were able to hydrolyze starch, DNA, urea, gelatin, L-arginine, and Tween 20. According to the 16S rRNA gene sequence similarity, the strain MAH-20T was identified as a new member of the genus Sphingomonas and had the close sequence similarity with Sphingomonas changbaiensis V2M44T (98.9%) and Sphingomonas tabacisoli X1-8T (98.1%). The genomic ANI value between strain MAH-20T and S. changbaiensis NBRC 104936T was 84.4%. The novel strain MAH-20T has a draft genome size of 3,350,026 bp (25 contigs), annotated with 3210 protein-coding genes, 46 tRNA, and 3 rRNA genes. The genomic DNA G + C content of isolate was 67.3 mol%, the predominant quinone was ubiquinone 10 and the major fatty acids were C16:0, C17:1 ω6c and summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c). On the basis of DNA-DNA hybridization results, phenotypic, genotypic, and chemotaxonomic data, the isolated strain MAH-20T represents a novel species, for which the name Sphingomonas horti sp. nov. is proposed, with MAH-20T as the type strain (= KACC 19746T = CGMCC1.13658T).


Subject(s)
Soil Microbiology , Sphingomonas/classification , Base Composition , Fatty Acids/analysis , Gardens , Solanum lycopersicum/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity , Sphingomonas/genetics
8.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073143

ABSTRACT

Resveratrol can inhibit cell proliferation and metastasis and induce apoptosis. However, the mechanisms of action through which resveratrol inhibits the abnormal proliferation of prostate stromal cells, causing prostatic hyperplasia, have not been fully elucidated. Here, we evaluated the inhibitory effects of resveratrol on cell° proliferation associated with prostatic hyperplasia using WPMY-1 cells. Our results showed that resveratrol inhibited the proliferation of WPMY-1 cells via the induction of G0/G1-phase cell cycle arrest, which was caused by downregulated expression of cyclins and cyclin-dependent kinases regulated by increased p21WAF1 and p27KIP1 expression level. In addition, resveratrol treatment suppressed the phosphorylation of phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2. The expression levels of molecular markers affecting prostate development were also reduced by treatment with resveratrol. Finally, resveratrol attenuated the binding activity of the transcription factor nuclear factor-κB in WPMY-1 cells, and accelerated apoptotic cell death via intrinsic cascade pathway. These results indicate that resveratrol may be useful for the prevention or treatment of prostatic hyperplasia.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Prostatic Hyperplasia , Resveratrol/pharmacology , Signal Transduction/drug effects , Stromal Cells/drug effects , Biomarkers/metabolism , Cell Cycle , Cell Line , Humans , Male , NF-kappa B/metabolism , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/prevention & control , Stromal Cells/cytology
9.
Int J Mol Sci ; 22(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535616

ABSTRACT

Non-muscle-invasive bladder cancer (NMIBC) is clinically heterogeneous; thus, many patients fail to respond to treatment and relapse. Here, we identified a molecular signature that is both prognostic and predictive for NMIBC heterogeneity and responses to Bacillus Calmette-Guérin (BCG) therapy. Transcriptomic profiling of 948 NMIBC patients identified a signature-based subtype predictor, MSP888, along with three distinct molecular subtypes: DP.BCG+ (related to progression and response to BCG treatment), REC.BCG+ (related to recurrence and response to BCG treatment), and EP (equivocal prognosis). Patients with the DP.BCG+ subtype showed worse progression-free survival but responded to BCG treatment, whereas those with the REC.BCG+ subtype showed worse recurrence-free survival but responded to BCG treatment. Multivariate analyses revealed that MSP888 showed independent clinical utility for predicting NMIBC prognosis (each p = 0.001 for progression and recurrence, respectively). Comparative analysis of this classifier and previously established molecular subtypes (i.e., Lund taxonomy and UROMOL class) revealed that a great proportion of patients were similar between subtypes; however, the MSP888 predictor better differentiated biological activity or responsiveness to BCG treatment. Our data increase our understanding of the mechanisms underlying the poor prognosis of NMIBC and the effectiveness of BCG therapy, which should improve clinical practice and complement other diagnostic tools.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Administration, Intravesical , BCG Vaccine/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Disease Progression , Disease-Free Survival , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunotherapy , Male , Middle Aged , Multivariate Analysis , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Prognosis , Progression-Free Survival , Proportional Hazards Models , Transcriptome , Treatment Outcome , Urinary Bladder Neoplasms/diagnosis , Young Adult
10.
Molecules ; 26(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806566

ABSTRACT

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Caspase 3/metabolism , Cell Cycle Checkpoints , Cell Movement , Pentacyclic Triterpenes/pharmacology , Urinary Bladder Neoplasms/drug therapy , Apoptosis , Caspase 3/genetics , Cell Proliferation , Humans , In Vitro Techniques , Neoplasm Metastasis , Reactive Oxygen Species , Tumor Cells, Cultured , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Betulinic Acid
11.
Int J Syst Evol Microbiol ; 70(11): 5841-5847, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32965207

ABSTRACT

A Gram-stain-negative, aerobic, non-motile and rod- or coccoid-shaped novel bacterial strain, designated MAH-25T, was isolated from soil sampled in a pine garden. The colonies were observed to be light pink-coloured, smooth, spherical and 1-2 mm in diameter when grown on nutrient agar for 2 days. Strain MAH-25T was found to be able to grow at 15-35 °C, at pH 5.0-8.0 and at 0-2.0 % NaCl. Cell growth occurred on Reasoner's 2A agar and nutrient agar. The strain was found to be positive in both oxidase and catalase tests. According to 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Ramlibacter and closely related to Ramlibacter solisilvae 5-10T (98.0 % similarity), Ramlibacter henchirensis TMB834T (97.7 %), Ramlibacter tataouinensis TTB310T (97.6 %) and Ramlibacter rhizophilus YS3.2.7T (97.3 %). The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-25T and the four closely related type strains were in the range of 78.8-81.3 % and 22.3-24.1 %, respectively. The novel strain MAH-25T has a draft genome size of 5 505 957 bp (11 contigs), annotated with 5210 protein-coding genes, 46 tRNA and three rRNA genes. The genomic DNA G+C content was determined to be 70.3 mol%. The predominant isoprenoid quinone was ubiquinone 8 (Q-8). The major fatty acids were identified as C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. On the basis of DNA-DNA hybridization, genotypic analysis, chemotaxonomic and physiological data, strain MAH-25T represents a novel species within the genus Ramlibacter, for which the name Ramlibacter pinisoli sp. nov. is proposed, with MAH-25T (=KACC 19839T=CGMCC1.13660T) as the type strain.


Subject(s)
Comamonadaceae/classification , Gardens , Phylogeny , Pinus , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Comamonadaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Ubiquinone/chemistry
12.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32752099

ABSTRACT

Hepatocellular carcinoma (HCC) has a high mortality rate worldwide, and treatment is very limited due to its high recurrence and low diagnosis rate, and therefore there is an increasing need to develop more effective drugs to treat HCC. Coptisine is one of the isoquinoline alkaloids, and it has various pharmacological effects. However, the evidence for the molecular mechanism of the anticancer efficacy is still insufficient. Therefore, this study investigated the antiproliferative effect of coptisine on human HCC Hep3B cells and identified the action mechanism. Our results showed that coptisine markedly increased DNA damage and apoptotic cell death, which was associated with induction of death receptor proteins. Coptisine also significantly upregulated expression of proapoptotic Bax protein, downregulated expression of anti-apoptotic Bcl-2 protein, and activated caspase-3, -8, and -9. In addition, coptisine remarkably increased the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and release of cytochrome c into the cytoplasm. However, N-acetylcysteine (NAC), a ROS scavenger, significantly attenuated the apoptosis-inducing effect of coptisine. It is worth noting that coptisine significantly upregulated phosphorylation of ROS-dependent c-Jun N-terminal kinase (JNK), whereas treatment with JNK inhibitor could suppress an apoptosis-related series event. Taken together, our results suggest that coptisine has an anticancer effect in Hep3B cells through ROS-mediated activation of the JNK signaling pathway.


Subject(s)
Berberine/analogs & derivatives , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Apoptosis/drug effects , Berberine/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Caspase 3/genetics , Cell Line, Tumor , Humans , JNK Mitogen-Activated Protein Kinases/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MAP Kinase Signaling System/drug effects , Membrane Potential, Mitochondrial/drug effects , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Reactive Oxygen Species/metabolism
13.
Int J Cancer ; 144(2): 380-388, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30183088

ABSTRACT

The most common symptom of bladder cancer (BC) is hematuria. However, not all patients with hematuria are diagnosed with BC. Here, we explored a novel method to discriminate BC from hematuria under nonmalignant conditions by measuring differences in urinary cell-free microRNA (miRNA) expression between patients with BC and those with hematuria. A multicenter study was performed using 543 urine samples obtained from the National Biobank of Korea, including 326 BC, 174 hematuria and 43 pyuria without cancer. The urinary miR-6124 to miR-4511 ratio was considerably higher in BC than in hematuria or pyuria, and enabled the discrimination of BC from patients with hematuria at a sensitivity of >90% (p < 0.001). Conclusively, the proposed noninvasive diagnostic tool based on the expression ratio of urinary cell-free miR-6124 to miR-4511 can reduce unnecessary cystoscopies in patients with hematuria undergoing evaluation for BC, with a minimal loss in sensitivity for detecting cancer.


Subject(s)
Biomarkers, Tumor/urine , Circulating MicroRNA/urine , Hematuria/diagnosis , Urinary Bladder Neoplasms/urine , Adult , Aged , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Urinary Bladder Neoplasms/diagnosis
14.
Phytother Res ; 33(12): 3228-3241, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31486124

ABSTRACT

The peel of Citrus unshiu Marcow. fruits (CU) has long been used as a traditional medicine that has therapeutic effects against pathogenic diseases, including asthma, vomiting, dyspepsia, blood circulation disorders, and various types of cancer. In this study, we investigated the effect of CU peel on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells, and in B16F10 cells inoculated-C57BL/6 mice. Our results show that ethanol extracts of CU (EECU) inhibited cell growth and increased the apoptotic cells in B16F10 cells. EECU also stimulated the induction of mitochondria-mediated intrinsic pathway, with reduced mitochondrial membrane potential and increased generation of intracellular reactive oxygen species. Furthermore, EECU suppressed the migration, invasion, and colony formation of B16F10 cells. In addition, the oral administration of EECU reduced serum lactate dehydrogenase activity without weight loss, hepatotoxicity, nor nephrotoxicity in B16F10 cell-inoculated mice. Moreover, EECU markedly suppressed lung hypertrophy, the number and expression of metastatic tumor nodules, and the expression of inflammatory tumor necrosis factor-alpha in lung tissue. In conclusion, our findings suggest that the inhibitory effect of EECU on the metastasis of melanoma indicates that it may be regarded as a potential therapeutic herbal drug for melanoma.


Subject(s)
Citrus/chemistry , Fruit/chemistry , Melanoma, Experimental/diet therapy , Neoplasm Metastasis/drug therapy , Animals , Apoptosis , Mice , Mice, Inbred C57BL
15.
Int J Mol Sci ; 20(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387245

ABSTRACT

Licochalcone A (LCA) is a chalcone that is predominantly found in the root of Glycyrrhiza species, which is widely used as an herbal medicine. Although previous studies have reported that LCA has a wide range of pharmacological effects, evidence for the underlying molecular mechanism of its anti-cancer efficacy is still lacking. In this study, we investigated the anti-proliferative effect of LCA on human bladder cancer cells, and found that LCA induced cell cycle arrest at G2/M phase and apoptotic cell death. Our data showed that LCA inhibited the expression of cyclin A, cyclin B1, and Wee1, but increased the expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1, and increased p21 was bound to Cdc2 and Cdk2. LCA activated caspase-8 and -9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and also increased caspase-3 activity, a typical effect caspase, subsequently leading to poly (ADP-ribose) polymerase cleavage. Additionally, LCA increased the Bax/Bcl-2 ratio, and reduced the integrity of mitochondria, which contributed to the discharge of cytochrome c from the mitochondria to the cytoplasm. Moreover, LCA enhanced the intracellular levels of reactive oxygen species (ROS); however, the interruption of ROS generation using ROS scavenger led to escape from LCA-mediated G2/M arrest and apoptosis. Collectively, the present data indicate that LCA can inhibit the proliferation of human bladder cancer cells by inducing ROS-dependent G2/M phase arrest and apoptosis.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Chalcones/pharmacology , Reactive Oxygen Species/metabolism , Urinary Bladder Neoplasms/metabolism , Biomarkers , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Mitochondria/drug effects , Mitochondria/metabolism
16.
Biol Pharm Bull ; 41(5): 713-721, 2018.
Article in English | MEDLINE | ID: mdl-29709909

ABSTRACT

The fruit of Citrus unshiu MARKOVICH used for various purposes in traditional medicine has various pharmacological properties including antioxidant, anti-inflammatory, and antibacterial effects. Recently, the possibility of anti-cancer activity of the extracts or components of this fruit has been reported; however, the exact mechanism has not yet been fully understood. In this study, we evaluated the anti-proliferative effect of water extract of C. unshiu peel (WECU) on human breast cancer MCF-7 cells and investigated the underlying mechanism. Our results showed that reduction of MCF-7 cell survival by WECU was associated with the induction of apoptosis. WECU-induced apoptotic cell death was related to the activation of caspase-8 and -9, representative initiate caspases of extrinsic and intrinsic apoptosis pathways, respectively, and increase in the Bax : Bcl-2 ratio accompanied by cleavage of poly(ADP-ribose) polymerase (PARP). WECU also increased the mitochondrial dysfunction and cytosolic release of cytochrome c. In addition, AMP-activated protein kinase (AMPK) and its downstream target molecule, acetyl-CoA carboxylase, were activated in a concentration-dependent manner in WECU-treated cells. In contrast, compound C, an AMPK inhibitor, significantly inhibited WECU-induced apoptosis, while inhibiting increased expression of Bax and decreased expression of Bcl-2 by WECU and inhibition of WECU-induced PARP degradation. Furthermore, WECU provoked the production of reactive oxygen species (ROS); however, the activation of AMKP and apoptosis by WECU were prevented, when the ROS production was blocked by antioxidant N-acetyl cysteine. Therefore, our data indicate that WECU suppresses MCF-7 cell proliferation by activating the intrinsic and extrinsic apoptosis pathways through ROS-dependent AMPK pathway activation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/metabolism , Citrus , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/drug effects , Fruit , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects
17.
J Korean Med Sci ; 33(47): e303, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30450027

ABSTRACT

BACKGROUND: Cell division cycle 6 (CDC6) is an essential regulator of DNA replication and plays important roles in the activation and maintenance of the checkpoint mechanisms in the cell cycle. CDC6 has been associated with oncogenic activities in human cancers; however, the clinical significance of CDC6 in prostate cancer (PCa) remains unclear. Therefore, we investigated whether the CDC6 mRNA expression level is a diagnostic and prognostic marker in PCa. METHODS: The study subjects included 121 PCa patients and 66 age-matched benign prostatic hyperplasia (BPH) patients. CDC6 expression was evaluated using real-time polymerase chain reaction and immunohistochemical (IH) staining, and then compared according to the clinicopathological characteristics of PCa. RESULTS: CDC6 mRNA expression was significantly higher in PCa tissues than in BPH control tissues (P = 0.005). In addition, CDC6 expression was significantly higher in patients with elevated prostate-specific antigen (PSA) levels (> 20 ng/mL), a high Gleason score, and advanced stage than in those with low PSA levels, a low Gleason score, and earlier stage, respectively. Multivariate logistic regression analysis showed that high expression of CDC6 was significantly associated with advanced stage (≥ T3b) (odds ratio [OR], 3.005; confidence interval [CI], 1.212-7.450; P = 0.018) and metastasis (OR, 4.192; CI, 1.079-16.286; P = 0.038). Intense IH staining for CDC6 was significantly associated with a high Gleason score and advanced tumor stage including lymph node metastasis stage (linear-by-linear association, P = 0.044 and P = 0.003, respectively). CONCLUSION: CDC6 expression is associated with aggressive clinicopathological characteristics in PCa. CDC6 may be a potential diagnostic and prognostic marker in PCa patients.


Subject(s)
Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism , Prostate-Specific Antigen/blood , Prostatic Neoplasms/pathology , RNA, Messenger/metabolism , Adult , Aged , Area Under Curve , Case-Control Studies , Cell Cycle Proteins/genetics , Humans , Logistic Models , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Nuclear Proteins/genetics , Odds Ratio , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/metabolism , ROC Curve
18.
Gen Physiol Biophys ; 37(6): 633-645, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30547894

ABSTRACT

Hyper-proliferation and migration of vascular smooth muscle cells (VSMCs) are closely associated with atherosclerosis. Recently, the flavonol morin has been reported to exhibit potent anti-oxidant and anti-inflammatory activities. Therefore, we investigated molecular mechanisms of morin in VSMCs stimulated by PDGF. Morin effectively inhibited PDGF-stimulated proliferation of VSMCs through a G1 cell-cycle arrest, leading to down-regulation of CDK2, CDK4, cyclin D1, and cyclin E proteins. Interestingly, PDGF markedly down-regulated p27KIP1 protein expression; however, morin treatment restored the p27KIP1expression to the basal level. Morin did not affect phosphorylation of MAPKs (ERK, p38, and JNK); however, phosphorylation of AKT was dramatically suppressed by morin in PDGF-stimulated VSMCs. Using the PI3K inhibitor, LY294002, we revealed that AKT is a key regulator in the inhibitory mechanism of morin against PDGF-induced proliferation of VSMCs. Morin disturbed migratory and invasive potential of VSMCs via suppression of matrix metalloproteinase-9 (MMP-9) activity. Using electrophoretic mobility shift assays, we verified that NF-κB, AP-1, and Sp-1 transcription factors are implicated in the mode of action of morin, which suppresses the MMP-9 activity in PDGF-induced VSMCs. Based on the results, we believe that morin may be a potential therapeutic agent for atherosclerosis without negative side effect.


Subject(s)
Cell Proliferation , Cell Movement , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p27 , Flavonoids , Matrix Metalloproteinase 9 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
19.
Gen Physiol Biophys ; 36(2): 117-128, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28218611

ABSTRACT

Mammalian thioredoxin reductase (TrxR) plays a vital role in restoring cellular redox balance disrupted by reactive oxygen species (ROS) generation and oxidative damage. Here, we evaluated whether auranofin, a selective inhibitor of TrxR, could serve as a potential anti-cancer agent through its selective targeting of TrxR activity in Hep3B hepatocellular carcinoma cells. Auranofin treatment reduced the TrxR activity of these cells and induced apoptosis, which were accompanied by up-regulation of death receptors (DRs) and activation of caspases, as well as promotion of proteolytic degradation of poly(ADP-ribose)-polymerase. Treatment with a pan-caspase inhibitor reversed the auranofin-induced apoptosis and growth suppression, indicating that auranofin may induce apoptosis through a caspase-dependent mechanism involving both the intrinsic and extrinsic apoptotic pathways. Auranofin also significantly altered mitochondrial function, promoting mitochondrial membrane permeabilization and cytochrome c release by regulating Bcl-2 family proteins; these events were accompanied by an accumulation of ROS. Inhibition of ROS generation with the ROS quencher significantly attenuated the inactivation of TrxR in auranofin-treated cells and almost completely suppressed the auranofin-induced up-regulation of DRs and activation of caspases, thereby preventing auranofin-induced apoptosis and loss of cell viability. Taken together, these findings indicate that auranofin inhibition of TrxR activity in Hep3B cells activates ROS- and caspase-dependent apoptotic signaling pathways and triggers cancer cell death.


Subject(s)
Apoptosis/drug effects , Auranofin/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Reactive Oxygen Species/metabolism , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Thioredoxin-Disulfide Reductase/metabolism , Treatment Outcome
20.
Drug Dev Res ; 78(2): 81-90, 2017 03.
Article in English | MEDLINE | ID: mdl-28176369

ABSTRACT

Preclinical Research Previous studies have shown that morin exerts diverse pharmacological activities. In this study, we investigated the inhibitory activity of morin on bladder cancer EJ cells. Morin significantly inhibited EJ cell proliferation, which was related to the G1-phase cell cycle arrest together with the reduced expression of cyclin D1, cyclin E, CDK2, and CDK4 via increased expression of p21WAF1. Morin also increased ERK1/2 phosphorylation and decreased JNK and AKT phosphorylation without altering the p38MAPK phosphorylation levels. Morin treatment suppressed the migration and invasion of EJ cells in wound-healing and transwell cell invasion assays. Zymographic and electrophoretic mobility shift assays showed that morin suppressed the expression of matrix metalloproteinase-9 (MMP-9) via repression of the binding activity of AP-1, Sp-1, and NF-κB. Collectively, these results demonstrate that morin reduced cyclin D1, cyclin E, CDK2 and CDK4 expression via the induction of p21WAF1 expression, increased ERK1/2 phosphorylation and decreased JNK, and AKT phosphorylation, and prevented MMP-9 expression via the inhibition of transcription factors AP-1, Sp-1, and NF-κB, thereby resulting in the inhibition of growth, migration, and invasion of bladder cancer EJ cells. These results provide a novel insight into the use of morin in the prevention of bladder cancer. Drug Dev Res 78 : 81-90, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/pharmacology , Flavonoids/pharmacology , Matrix Metalloproteinase 9/metabolism , Urinary Bladder Neoplasms/metabolism , Antineoplastic Agents/therapeutic use , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Flavonoids/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasm Invasiveness , Signal Transduction/drug effects , Urinary Bladder Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL