Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Haematologica ; 107(3): 690-701, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33792219

ABSTRACT

B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL, such as diffuse large B-cell lymphoma, have been comprehensively interrogated at the genomic level, but rarer subtypes, such as mantle cell lymphoma, remain less extensively characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared using the same methodology to identify conserved or subtype-specific patterns of genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach encompassing 380 genes to interrogate the genomic landscapes of 685 B-NHL tumors at high depth, including diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, and Burkitt lymphoma. We identified conserved hallmarks of B-NHL that were deregulated in the majority of tumors from each subtype, including frequent genetic deregulation of the ubiquitin proteasome system. In addition, we identified subtype-specific patterns of genetic alterations, including clusters of co-occurring mutations and DNA copy number alterations. The cumulative burden of mutations within a single cluster were more discriminatory of B-NHL subtypes than individual mutations, implicating likely patterns of genetic cooperation that contribute to disease etiology. We therefore provide the first cross-sectional analysis of mutations and DNA copy number alterations across major B-NHL subtypes and a framework of co-occurring genetic alterations that deregulate genetic hallmarks and likely cooperate in lymphomagenesis.


Subject(s)
Burkitt Lymphoma , Lymphoma, Follicular , Lymphoma, Large B-Cell, Diffuse , Adult , Cross-Sectional Studies , Humans , Lymphoma, Follicular/genetics , Mutation
2.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743155

ABSTRACT

B-cell chronic lymphocytic leukemia (CLL) results from intrinsic genetic defects and complex microenvironment stimuli that fuel CLL cell growth through an array of survival signaling pathways. Novel small-molecule agents targeting the B-cell receptor pathway and anti-apoptotic proteins alone or in combination have revolutionized the management of CLL, yet combination therapy carries significant toxicity and CLL remains incurable due to residual disease and relapse. Single-molecule inhibitors that can target multiple disease-driving factors are thus an attractive approach to combat both drug resistance and combination-therapy-related toxicities. We demonstrate that SRX3305, a novel small-molecule BTK/PI3K/BRD4 inhibitor that targets three distinctive facets of CLL biology, attenuates CLL cell proliferation and promotes apoptosis in a dose-dependent fashion. SRX3305 also inhibits the activation-induced proliferation of primary CLL cells in vitro and effectively blocks microenvironment-mediated survival signals, including stromal cell contact. Furthermore, SRX3305 blocks CLL cell migration toward CXCL-12 and CXCL-13, which are major chemokines involved in CLL cell homing and retention in microenvironment niches. Importantly, SRX3305 maintains its anti-tumor effects in ibrutinib-resistant CLL cells. Collectively, this study establishes the preclinical efficacy of SRX3305 in CLL, providing significant rationale for its development as a therapeutic agent for CLL and related disorders.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Cell Cycle Proteins/pharmacology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Nuclear Proteins , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Transcription Factors , Tumor Microenvironment
3.
Blood ; 129(19): 2645-2656, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28288979

ABSTRACT

CREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits in B-cell development and can cooperate with Bcl2 overexpression to promote B-cell lymphoma. Through transcriptional and epigenetic profiling of these B cells, we found that Crebbp inactivation was associated with broad transcriptional alterations, but no changes in the patterns of histone acetylation at the proximal regulatory regions of these genes. However, B cells with Crebbp inactivation showed high expression of Myc and patterns of altered histone acetylation that were localized to intragenic regions, enriched for Myc DNA binding motifs, and showed Myc binding. Through the analysis of CREBBP mutations from a large cohort of primary human FL and DLBCL, we show a significant difference in the spectrum of CREBBP mutations in these 2 diseases, with higher frequencies of nonsense/frameshift mutations in DLBCL compared with FL. Together, our data therefore provide important links between Crebbp inactivation and Bcl2 dependence and show a role for Crebbp inactivation in the induction of Myc expression. We suggest this may parallel the role of CREBBP frameshift/nonsense mutations in DLBCL that result in loss of the protein, but may contrast the role of missense mutations in the lysine acetyltransferase domain that are more frequently observed in FL and yield an inactive protein.


Subject(s)
B-Lymphocytes/pathology , CREB-Binding Protein/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Animals , Epigenesis, Genetic , Gene Deletion , Humans , Lymphoma, Follicular/genetics , Mice , Mice, Transgenic , Mutation
4.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775157

ABSTRACT

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eµ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , T-Lymphocytes , Tumor Microenvironment , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Humans , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Cell Proliferation/drug effects , Bromodomain Containing Proteins , Proteins
5.
J Extracell Vesicles ; 10(14): e12177, 2021 12.
Article in English | MEDLINE | ID: mdl-34913274

ABSTRACT

Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage.


Subject(s)
Extracellular Vesicles/metabolism , Methamphetamine/adverse effects , MicroRNAs/adverse effects , Animals , Chronic Disease , Humans , Macaca mulatta
6.
Biomedicines ; 9(4)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919584

ABSTRACT

Effective therapeutics are urgently needed to counter infection and improve outcomes for patients suffering from COVID-19 and to combat this pandemic. Manipulation of epigenetic machinery to influence viral infectivity of host cells is a relatively unexplored area. The bromodomain and extraterminal (BET) family of epigenetic readers have been reported to modulate SARS-CoV-2 infection. Herein, we demonstrate apabetalone, the most clinical advanced BET inhibitor, downregulates expression of cell surface receptors involved in SARS-CoV-2 entry, including angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase 4 (DPP4 or CD26) in SARS-CoV-2 permissive cells. Moreover, we show that apabetalone inhibits SARS-CoV-2 infection in vitro to levels comparable to those of antiviral agents. Taken together, our study supports further evaluation of apabetalone to treat COVID-19, either alone or in combination with emerging therapeutics.

7.
Stem Cells Int ; 2019: 8710180, 2019.
Article in English | MEDLINE | ID: mdl-31191687

ABSTRACT

The identification of several evolutionary young miRNAs, which arose in primates, raised several possibilities for the role of such miRNAs in human-specific disease processes. We previously have identified an evolutionary young miRNA, miR-1290, to be essential in neural stem cell proliferation and neuronal differentiation. Here, we show that miR-1290 is significantly downregulated during neuronal differentiation in reprogrammed induced pluripotent stem cell- (iPSC-) derived neurons obtained from idiopathic autism spectrum disorder (ASD) patients. Further, we identified that miR-1290 is actively released into extracellular vesicles. Supplementing ASD patient-derived neural stem cells (NSCs) with conditioned media from differentiated control-NSCs spiked with "artificial EVs" containing synthetic miR-1290 oligonucleotides significantly rescued differentiation deficits in ASD cell lines. Based on our earlier published study and the observations from the data presented here, we conclude that miR-1290 regulation could play a critical role during neuronal differentiation in early brain development.

8.
Sci Transl Med ; 11(497)2019 06 19.
Article in English | MEDLINE | ID: mdl-31217338

ABSTRACT

The activated B cell (ABC-like) subtype of diffuse large B cell lymphoma (DLBCL) is characterized by chronic activation of signaling initiated by immunoglobulin µ (IgM). By analyzing the DNA copy number profiles of 1000 DLBCL tumors, we identified gains of 18q21.2 as the most frequent genetic alteration in ABC-like DLBCL. Using integrative analysis of matched gene expression profiling data, we found that the TCF4 (E2-2) transcription factor gene was the target of these alterations. Overexpression of TCF4 in ABC-like DLBCL cell lines led to its occupancy on immunoglobulin (IGHM) and MYC gene enhancers and increased expression of these genes at the transcript and protein levels. Inhibition of TCF4 activity with dominant-negative constructs was synthetically lethal to ABC-like DLBCL cell lines harboring TCF4 DNA copy gains, highlighting these gains as an attractive potential therapeutic target. Furthermore, the TCF4 gene was one of the top BRD4-regulated genes in DLBCL cell lines. BET proteolysis-targeting chimera (PROTAC) ARV771 extinguished TCF4, MYC, and IgM expression and killed ABC-like DLBCL cells in vitro. In DLBCL xenograft models, ARV771 treatment reduced tumor growth and prolonged survival. This work highlights a genetic mechanism for promoting immunoglobulin signaling in ABC-like DLBCL and provides a functional rationale for the use of BET inhibitors in this disease.


Subject(s)
Immunoglobulins/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Transcription Factor 4/genetics , Animals , Blotting, Western , Cell Line , Cell Survival , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Mice , Mice, Nude , Signal Transduction/genetics , Signal Transduction/physiology , Xenograft Model Antitumor Assays
9.
Sci Rep ; 8(1): 17464, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504847

ABSTRACT

Previous research has established sex differences associated with nicotine intake, however a significant gap in knowledge remains regarding the molecular mechanisms that govern these differences at the transcriptional level. One critical regulator of transcription are microRNAs (miRNAs). miRNAs are a family of non-coding RNAs that regulate an array of important biological functions altered in several disease states, including neuroadaptive changes within the brain associated with drug dependence. We examined the prefrontal cortex (PFC) from male and female Sprague-Dawley rats following self-administration (22 days) of nicotine or yoked saline controls using next generation RNA-Sequencing (RNA-Seq) technology and found an array of miRNAs to be significantly and differentially regulated by nicotine self-administration. Of these, we found the expression of miR-199a and 214, which are expressed on the same cluster of chromosome 1, to be upregulated in the female rats exposed to nicotine; upregulation in this group was further validated by real time polymerase chain reaction (RT-PCR). Bioinformatics analysis to assess common targets of miR-199/214 identified Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD)- dependent deacetylase that plays a role in apoptosis, neuron survival, and stress resistance. Using western-blot, we confirmed downregulation of SIRT1 and increased cleaved caspase 3 expression in the brains of nicotine-exposed female rats and no change in expression levels in the other groups. Collectively, our findings highlight a miR-199/214 regulatory network that, through SIRT1, may be associated with nicotine seeking in females which may serve as a potential therapeutic target for sex-specific treatment approaches.


Subject(s)
MicroRNAs/genetics , Nicotine/administration & dosage , Sex Factors , Sirtuin 1/metabolism , Animals , Down-Regulation , Female , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL