ABSTRACT
WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.
Subject(s)
Hematologic Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic useABSTRACT
WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust inĀ vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant inĀ vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent inĀ vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these inĀ vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.
Subject(s)
Intracellular Signaling Peptides and Proteins , Neoplasms , WD40 Repeats , Animals , Humans , Mice , Chromatin , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Models, Animal , Neoplasms/drug therapy , Cell Line, TumorABSTRACT
BACKGROUND: Coronavirus disease 2019 (COVID-19) has strained healthcare systems with patient hospitalizations and deaths. Anti-spike monoclonal antibodies, including bamlanivimab, have demonstrated reduction in hospitalization rates in clinical trials, yet real-world evidence is lacking. METHODS: We conducted a retrospective case-control study across a single healthcare system of nonhospitalized patients, age 18 years or older, with documented positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, risk factors for severe COVID-19, and referrals for bamlanivimab via emergency use authorization. Cases were defined as patients who received bamlanivimab; contemporary controls had a referral order placed but did not receive bamlanivimab. The primary outcome was 30-day hospitalization rate from initial positive SARS-CoV-2 polymerase chain reaction (PCR). Descriptive statistics, including χĆ¢ĀĀ2 and Mann-Whitney U test, were performed. Multivariable logistic regression was used for adjusted analysis to evaluate independent associations with 30-day hospitalization. RESULTS: Between 30 November 2020 and 19 January 2021, 218 patients received bamlanivimab (cases), and 185 were referred but did not receive drug (controls). Thirty-day hospitalization rate was significantly lower among patients who received bamlanivimab (7.3% vs 20.0%, risk ratio [RR] 0.37, 95% confidence interval [CI]: .21-.64, P < .001), and the number needed to treat was 8. On logistic regression, odds of hospitalization were increased in patients not receiving bamlanivimab and with a higher number of pre-specified comorbidities (odds ratio [OR] 4.19 ,95% CI: 1.31-2.16, P < .001; OR 1.68, 95% CI: 2.12-8.30, P < .001, respectively). CONCLUSIONS: Ambulatory patients with COVID-19 who received bamlanivimab had a lower 30-day hospitalization than control patients in real-world experience. We identified receipt of bamlanivimab and fewer comorbidities as protective factors against hospitalization.Bamlanivimab's role in preventing hospitalization associated with coronavirus disease 2019 (COVID-19) remains unclear. In a real-world, retrospective study of 403 high-risk, ambulatory patients with COVID-19, receipt of bamlanivimab compared to no monoclonal antibody therapy was associated with lower 30-day hospitalization.
Subject(s)
COVID-19 , Adolescent , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Case-Control Studies , Humans , Retrospective Studies , SARS-CoV-2ABSTRACT
Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.
Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Ethers/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Aniline Compounds/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Ethers/chemistry , Humans , L-Lactate Dehydrogenase/chemistryABSTRACT
High content screening (HCS) experiments create a classic data management challenge-multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of "final" results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org.
Subject(s)
Computational Biology/statistics & numerical data , Data Mining/statistics & numerical data , High-Throughput Screening Assays/statistics & numerical data , Information Storage and Retrieval/statistics & numerical data , Software , Computational Biology/methods , Datasets as Topic , High-Throughput Screening Assays/methods , Humans , Information Dissemination , Information Storage and Retrieval/methods , InternetABSTRACT
Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO's Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org.
Subject(s)
Information Dissemination , Molecular Imaging , Software , Animals , Internet , PublishingABSTRACT
Data-intensive research depends on tools that manage multidimensional, heterogeneous datasets. We built OME Remote Objects (OMERO), a software platform that enables access to and use of a wide range of biological data. OMERO uses a server-based middleware application to provide a unified interface for images, matrices and tables. OMERO's design and flexibility have enabled its use for light-microscopy, high-content-screening, electron-microscopy and even non-image-genotype data. OMERO is open-source software, available at http://openmicroscopy.org/.
Subject(s)
Database Management Systems , Databases, Factual , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Models, Biological , Software , User-Computer Interface , Animals , Biology/methods , Computer Simulation , HumansABSTRACT
Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound 26, that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments. Evaluation of 26 as a single agent in Mcl-1 sensitive hematological and solid tumor xenograft models resulted in regressions. Co-treatment of Mcl-1-sensitive and Mcl-1 insensitive lung cancer derived xenografts with 26 and docetaxel or topotecan, respectively, resulted in an enhanced tumor response. These findings support the premise that pro-apoptotic priming of tumor cells by other therapies in combination with Mcl-1 inhibition may significantly expand the subset of cancers in which Mcl-1 inhibitors may prove beneficial.
Subject(s)
Antineoplastic Agents , Myeloid Cell Leukemia Sequence 1 Protein , Xenograft Model Antitumor Assays , Animals , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Dogs , Structure-Activity Relationship , Female , Drug Discovery , Taxoids/pharmacology , Taxoids/pharmacokinetics , Taxoids/therapeutic use , Taxoids/chemistry , Docetaxel/pharmacology , Docetaxel/therapeutic use , Docetaxel/pharmacokinetics , Docetaxel/chemistryABSTRACT
The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.
Subject(s)
Databases, Protein , Software , Electron Microscope Tomography , Imaging, Three-Dimensional , Internet , Models, Molecular , Protein Structure, Quaternary , Proteins/chemistry , Proteins/ultrastructureABSTRACT
The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.
Subject(s)
Antineoplastic Agents , WD40 Repeats , Animals , Drug Discovery , Antineoplastic Agents/pharmacologyABSTRACT
WD repeat domain 5 (WDR5) is a nuclear scaffolding protein that forms many biologically important multiprotein complexes. The WIN site of WDR5 represents a promising pharmacological target in a variety of human cancers. Here, we describe the optimization of our initial WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based convergent strategy to improve its druglike properties and pharmacokinetic profile. The core of the previous lead remained constant while a focused SAR effort on the three pharmacophore units was combined to generate a new in vivo lead series. Importantly, this new series of compounds has picomolar binding affinity, improved cellular antiproliferative activity and selectivity, and increased kinetic aqueous solubility. They also exhibit a desirable oral pharmacokinetic profile with manageable intravenous clearance and high oral bioavailability. Thus, these new leads are useful probes toward studying the effects of WDR5 inhibition.
Subject(s)
Intracellular Signaling Peptides and Proteins , Humans , WD40 RepeatsABSTRACT
Aurora kinases have recently taken centre stage in the regulation of key cell cycle processes. Aurora A is emerging as a critical regulator of centrosome and spindle function. Aurora B mediates chromosome segregation by ensuring proper biorientation of sister chromatids, possibly through the regulation of microtubule dynamics. This enzyme also functions in cytokinesis apparently by interacting with a critical GTPase and a kinesin-like protein. Recent work on both kinases has revealed functional links between Aurora kinase activity and the mechanics of cell division.
Subject(s)
Mitosis , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Aurora Kinase B , Aurora Kinases , Cell Cycle Proteins , Cell Division , Chromatids/chemistry , Chromatin/metabolism , Drosophila , Glycogen Debranching Enzyme System/chemistry , Humans , Kinetics , Microscopy, Fluorescence , Microtubules , Models, Biological , Xenopus , Xenopus ProteinsABSTRACT
A series of 3-(pyridin-2-yl-ethynyl)benzamide negative allosteric modulators of the metabotropic glutamate receptor 5 (mGluR5 NAMs) have been prepared. Starting from HTS hit 1 (IC(50): 926 nM), potent mGluR5 NAMs showing excellent potencies (IC(50)s<50 nM) and good physicochemical profiles were prepared by monitoring LipE values. One compound 26 showed excellent mGluR5 binding (K(i): 21 nM) and antagonism (IC(50): 8 nM), an excellent rat PK profile (CL: 12 mL/min/kg, %F: 85) and showed oral activity in a mouse 4-Plate Behavioral model of anxiety (MED: 30 mpk) and a mouse Stress Induced Hyperthermia model of anxiety (MED 17.8 mpk).
Subject(s)
Benzamides/chemistry , Pyridines/chemistry , Receptors, Metabotropic Glutamate/chemistry , Allosteric Regulation , Animals , Anxiety Disorders/drug therapy , Benzamides/pharmacokinetics , Benzamides/therapeutic use , Disease Models, Animal , High-Throughput Screening Assays , Mice , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/metabolismABSTRACT
A multicenter case series of 21 patients were treated with imipenem-cilastatin-relebactam. There were mixed infection sources, with pulmonary infections (11/21,52%) composing the majority. The primary pathogen was Pseudomonas aeruginosa (16/21, 76%), and 15/16 (94%) isolates were multidrug-resistant. Thirty-day survival occurred in 14/21 (67%) patients. Two patients experienced adverse effects.
ABSTRACT
KEY POINTS: In a multicenter point-prevalence study, we found that the rate of supportive care was high; among those receiving COVID-19 drug therapies, adverse reactions occurred in 12% of patients. PURPOSE: There are currently no FDA-approved medications for the treatment of coronavirus disease 2019 (COVID-19). At the onset of the pandemic, off-label medication use was supported by limited or no clinical data. We sought to characterize experimental COVID-19 therapies and identify safety signals during this period. METHODS: We conducted a noninterventional, multicenter, point prevalence study of patients hospitalized with suspected/confirmed COVID-19. Clinical and treatment characteristics within a 24-hour window were evaluated in a random sample of up to 30 patients per site. The primary objective was to describe COVID-19-targeted therapies. The secondary objective was to describe adverse drug reactions (ADRs). RESULTS: A total of 352 patients treated for COVID-19 at 15 US hospitals From April 18 to May 8, 2020, were included in the study. Most patients were treated at academic medical centers (53.4%) or community hospitals (42.6%). Sixty-seven patients (19%) were receiving drug therapy in addition to supportive care. Drug therapies used included hydroxychloroquine (69%), remdesivir (10%), and interleukin-6 antagonists (9%). Five patients (7.5%) were receiving combination therapy. The rate of use of COVID-19-directed drug therapy was higher in patients with vs patients without a history of asthma (14.9% vs 7%, P = 0.037) and in patients enrolled in clinical trials (26.9% vs 3.2%, P < 0.001). Among those receiving drug therapy, 8 patients (12%) experienced an ADR, and ADRs were recognized at a higher rate in patients enrolled in clinical trials (62.5% vs 22%; odds ratio, 5.9; P = 0.028). CONCLUSION: While we observed high rates of supportive care for patients with COVID-19, we also found that ADRs were common among patients receiving drug therapy, including those enrolled in clinical trials. Comprehensive systems are needed to identify and mitigate ADRs associated with experimental COVID-19 treatments.
Subject(s)
COVID-19 Drug Treatment , Drug Therapy, Combination/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions/epidemiology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Child , Child, Preschool , Drug Therapy, Combination/adverse effects , Female , Humans , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Prevalence , Retrospective Studies , United States/epidemiology , Young AdultABSTRACT
Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are oncogenic for a number of malignancies, primarily low-grade gliomas and acute myeloid leukemia. We report a medicinal chemistry campaign around a 7,7-dimethyl-7,8-dihydro-2H-1λ2-quinoline-2,5(6H)-dione screening hit against the R132H and R132C mutant forms of isocitrate dehydrogenase (IDH1). Systematic SAR efforts produced a series of potent pyrid-2-one mIDH1 inhibitors, including the atropisomer (+)-119 (NCATS-SM5637, NSC 791985). In an engineered mIDH1-U87-xenograft mouse model, after a single oral dose of 30 mg/kg, 16 h post dose, between 16 and 48 h, (+)-119 showed higher tumoral concentrations that corresponded to lower 2-HG concentrations, when compared with the approved drug AG-120 (ivosidenib).
Subject(s)
Enzyme Inhibitors/chemistry , Isocitrate Dehydrogenase/antagonists & inhibitors , Pyridones/chemistry , Animals , Brain/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Half-Life , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Nude , Microsomes, Liver/metabolism , Mutagenesis, Site-Directed , Neoplasms/drug therapy , Neoplasms/pathology , Pyridines/therapeutic use , Pyridones/metabolism , Pyridones/therapeutic use , Rats , Structure-Activity Relationship , Xenograft Model Antitumor AssaysABSTRACT
A series of biaryl amides containing an azabicyclooctane amine headpiece were synthesized and evaluated as mixed arginine vasopressin (AVP) receptor antagonists. Several analogues, including 8g, 12g, 13d, and 13g, were shown to have excellent V(1a)- and good V(2)-receptor binding affinities. Compound 13d was further profiled for drug-like properties and for an in vitro comparison with conivaptan, the program's mixed V(1a)/V(2)-receptor antagonist standard.
Subject(s)
Antidiuretic Hormone Receptor Antagonists , Arginine Vasopressin/antagonists & inhibitors , Aza Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemical synthesis , Octanes/chemical synthesis , Animals , Aza Compounds/pharmacology , Benzazepines , Bridged Bicyclo Compounds/pharmacology , Humans , Molecular Structure , Octanes/pharmacology , Structure-Activity RelationshipABSTRACT
Piperidinyl diphenylsulfonyl sulfonamides are a novel class of molecules that have inhibitory binding affinity for sFRP-1. As a secreted protein sFRP-1 inhibits the function of the secreted Wnt glycoprotein. Therefore, as inhibitors of sFRP-1 these small molecules facilitate the Wnt/beta-catenin canonical signaling pathway. Details of the structure-activity relationships and biological activity of this structural class of compounds will be discussed.
Subject(s)
Glycoproteins/antagonists & inhibitors , Signal Transduction/drug effects , Sulfonamides/chemistry , Sulfonamides/pharmacology , Wnt Proteins/metabolism , Animals , Cell Line, Tumor , Glycoproteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Microsomes, Liver/metabolism , Organ Culture Techniques , Osteogenesis/drug effects , Rats , Skull/cytology , Skull/drug effects , Structure-Activity Relationship , beta Catenin/metabolismABSTRACT
WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.