Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 13(1): 4143, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842428

ABSTRACT

The accurate repair of DNA double-strand breaks (DSBs), highly toxic DNA lesions, is crucial for genome integrity and is tightly regulated during the cell cycle. In mitosis, cells inactivate DSB repair in favor of a tethering mechanism that stabilizes broken chromosomes until they are repaired in the subsequent cell cycle phases. How this is achieved mechanistically is not yet understood, but the adaptor protein TOPBP1 is critically implicated in this process. Here, we identify CIP2A as a TOPBP1-interacting protein that regulates TOPBP1 localization specifically in mitosis. Cells lacking CIP2A display increased radio-sensitivity, micronuclei formation and chromosomal instability. CIP2A is actively exported from the cell nucleus in interphase but, upon nuclear envelope breakdown at the onset of mitosis, gains access to chromatin where it forms a complex with MDC1 and TOPBP1 to promote TOPBP1 recruitment to sites of mitotic DSBs. Collectively, our data uncover CIP2A-TOPBP1 as a mitosis-specific genome maintenance complex.


Subject(s)
Autoantigens , Carrier Proteins , DNA Repair , DNA-Binding Proteins , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Nuclear Proteins , Autoantigens/genetics , Autoantigens/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Instability , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitosis/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
2.
Nat Commun ; 11(1): 123, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31913317

ABSTRACT

Induction of DNA double-strand breaks (DSBs) in ribosomal DNA (rDNA) repeats is associated with ATM-dependent repression of ribosomal RNA synthesis and large-scale reorganization of nucleolar architecture, but the signaling events that regulate these responses are largely elusive. Here we show that the nucleolar response to rDNA breaks is dependent on both ATM and ATR activity. We further demonstrate that ATM- and NBS1-dependent recruitment of TOPBP1 in the nucleoli is required for inhibition of ribosomal RNA synthesis and nucleolar segregation in response to rDNA breaks. Mechanistically, TOPBP1 recruitment is mediated by phosphorylation-dependent interactions between three of its BRCT domains and conserved phosphorylated Ser/Thr residues at the C-terminus of the nucleolar phosphoprotein Treacle. Our data thus reveal an important cooperation between TOPBP1 and Treacle in the signaling cascade that triggers transcriptional inhibition and nucleolar segregation in response to rDNA breaks.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Carrier Proteins/metabolism , Cell Nucleolus/genetics , DNA, Ribosomal/genetics , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Amino Acid Motifs , Ataxia Telangiectasia Mutated Proteins/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleolus/metabolism , DNA Breaks, Double-Stranded , DNA, Ribosomal/metabolism , DNA-Binding Proteins/genetics , Humans , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL