ABSTRACT
Antimicrobial resistance (AMR) is a growing threat to public health and farming at large. In clinical and veterinary practice, timely characterization of the antibiotic susceptibility profile of bacterial infections is a crucial step in optimizing treatment. High-throughput sequencing is a promising option for clinical point-of-care and ecological surveillance, opening the opportunity to develop genotyping-based AMR determination as a possibly faster alternative to phenotypic testing. In the present work, we compare the performance of state-of-the-art methods for detection of AMR using high-throughput sequencing data from clinical settings. We consider five computational approaches based on alignment (AMRPlusPlus), deep learning (DeepARG), k-mer genomic signatures (KARGA, ResFinder) or hidden Markov models (Meta-MARC). We use an extensive collection of 585 isolates with available AMR resistance profiles determined by phenotypic tests across nine antibiotic classes. We show how the prediction landscape of AMR classifiers is highly heterogeneous, with balanced accuracy varying from 0.40 to 0.92. Although some algorithms-ResFinder, KARGA and AMRPlusPlus-exhibit overall better balanced accuracy than others, the high per-AMR-class variance and related findings suggest that: (1) all algorithms might be subject to sampling bias both in data repositories used for training and experimental/clinical settings; and (2) a portion of clinical samples might contain uncharacterized AMR genes that the algorithms-mostly trained on known AMR genes-fail to generalize upon. These results lead us to formulate practical advice for software configuration and application, and give suggestions for future study designs to further develop AMR prediction tools from proof-of-concept to bedside.
Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Employment , High-Throughput Nucleotide Sequencing , Microbial Sensitivity TestsABSTRACT
Objectives: Reference materials are important in the standardization of autoantibody testing and only a few are freely available for many known autoantibodies. Our goal was to develop three reference materials for antibodies to PML bodies/multiple nuclear dots (MND), antibodies to GW bodies (GWB), and antibodies to the nuclear mitotic apparatus (NuMA). Methods: Reference materials for identifying autoantibodies to MND (MND-REF), GWB (GWB-REF), and NuMA (NuMA-REF) were obtained from three donors and validated independently by seven laboratories. The sera were characterized using indirect immunofluorescence assay (IFA) on HEp-2 cell substrates including two-color immunofluorescence using antigen-specific markers, western blot (WB), immunoprecipitation (IP), line immunoassay (LIA), addressable laser bead immunoassay (ALBIA), enzyme-linked immunosorbent assay (ELISA), and immunoprecipitation-mass spectrometry (IP-MS). Results: MND-REF stained 6-20 discrete nuclear dots that colocalized with PML bodies. Antibodies to Sp100 and PML were detected by LIA and antibodies to Sp100 were also detected by ELISA. GWB-REF stained discrete cytoplasmic dots in interphase cells, which were confirmed to be GWB using two-color immunofluorescence. Anti-Ge-1 antibodies were identified in GWB-REF by ALBIA, IP, and IP-MS. All reference materials produced patterns at dilutions of 1:160 or greater. NuMA-REF produced fine speckled nuclear staining in interphase cells and staining of spindle fibers and spindle poles. The presence of antibodies to NuMA was verified by IP, WB, ALBIA, and IP-MS. Conclusions: MND-REF, GWB-REF, and NuMA-REF are suitable reference materials for the corresponding antinuclear antibodies staining patterns and will be accessible to qualified laboratories.
Subject(s)
Antibodies, Antinuclear/immunology , Cell Cycle Proteins/blood , Cellular Structures , Immunoassay/standards , Nuclear Proteins/blood , Cell Cycle Proteins/immunology , Cell Line, Tumor , Cellular Structures/immunology , Humans , Nuclear Proteins/immunology , Reference StandardsABSTRACT
Background International autoantibody standards, traditionally based on material obtained from plasmapheresis of single subjects, represent individual immune response and may not comprehend the heterogeneity of the general population. The anti-DFS70 autoantibody yields a characteristic dense fine speckled (DFS) nuclear pattern on indirect immunofluorescence assay on HEp-2 cells (HEp-2 IFA) and speaks against autoimmunity. We propose a novel strategy for developing autoantibody reference standards, based on stepwise pooling of serum samples from hundreds of individuals with anti-DFS70 antibodies. Methods Within a 2-year period, serum samples were selected from routine HEp-2 IFA according to the following criteria: DFS HEp-2 IFA pattern at titer ≥1:640; anti-DFS70 reactivity in three analyte-specific tests (Western blot [WB], enzyme-linked immunosorbent assay [ELISA] and chemiluminescent immunoassay [CLIA]). Aliquots of individual samples were combined into progressively larger pools with stepwise validation of intermediary pools as for individual samples. Validated intermediary pools were merged into a final pool for lyophilization. Results A total of 741 validated samples yielded a 750 mL final pool that was lyophilized into thousands of 200 µL-aliquots. Reconstituted aliquots yielded the expected anti-DFS70 reactivity in ELISA, CLIA and WB, as well as high-titer DFS HEp-2 IFA pattern. The appropriate anti-DFS70 reactivity of the lyophilized pool was confirmed by seven international expert centers, using HEp-2 IFA, ELISA, WB and immunoprecipitation. Conclusions This proof-of-concept study provides an innovative and efficient strategy to build serum reference standards for autoantibody testing. The anti-DFS70 standard will integrate the panel of standards of Autoantibody Standardization Committee (ASC, www.autoab.org), contributing to education for proper assay validation and interpretation of the DFS pattern and other HEp-2 IFA patterns.
Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Autoantibodies/metabolism , Mass Spectrometry/methods , Proof of Concept Study , Female , Humans , MaleABSTRACT
This paper reports the process by which a personalized cancer treatment system was built, following a user-centered approach. We give some background on personalized cancer treatment, the particular tumor chemosensitivity assay supported by the system, as well as some quality and legal issues related to such health systems. We describe how Contextual Design was applied when building the system. Contextual design is a user-centered design technique involving seven steps. We also provide some details about the system implementation. Finally, we explain how the Think-Aloud protocol and Heuristic Evaluation methods were used to evaluate the system and report its results. A qualitative assessment from the users perspective is also provided. Results from the heuristic evaluation indicate that only one of ten heuristics was missing from the system, while five were partially covered and four were fully covered.
Subject(s)
Drug Screening Assays, Antitumor/methods , Equipment Design/methods , Neoplasms/drug therapy , Precision Medicine/methods , Adenosine Triphosphate , Drug Screening Assays, Antitumor/instrumentation , Equipment Design/instrumentation , Humans , Precision Medicine/instrumentation , User-Computer InterfaceABSTRACT
Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, plays a key role in the pathogenesis of gas gangrene. CpPLC may lead to cell lysis at concentrations that cause extensive degradation of plasma membrane phospholipids. However, at sublytic concentrations it induces cytotoxicity without inducing evident membrane damage. The results of this work demonstrate that CpPLC becomes internalized in cells by a dynamin-dependent mechanism and in a time progressive process: first, CpPLC colocalizes with caveolin both at the plasma membrane and in vesicles, and later it colocalizes with early and late endosomes and lysosomes. Lysosomal damage in the target cells is evident 9 h after CpPLC exposure. Our previous work demonstrated that CpPLCinduces ERK1/2 activation, which is involved in its cytotoxic effect. In this work we found that cholesterol sequestration, dynamin inhibition, as well as inhibition of actin polymerization, prevent CpPLC internalization and ERK1/2 activation, involving endocytosis in the signalling events required for CpPLC cytotoxic effect at sublytic concentrations. These results provide new insights about the mode of action of this bacterial phospholipase C, previously considered to act only locally on cell membrane.
Subject(s)
Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/toxicity , Endocytosis , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Type C Phospholipases/metabolism , Type C Phospholipases/toxicity , Cell Line , HumansABSTRACT
BACKGROUND: Sense of orientation in hospitals can be tricky considering the large extension of buildings and the inadequate signage. AIM: To report some of the findings of a larger research project on wayfinding and patient navigation in Chilean hospitals. MATERIAL AND METHODS: Five hundred nine hospital users waiting for attention in three hospitals were contacted and asked to answer a survey that lasted 10 minutes, about wayfinding and sense of orientation within the hospital. RESULTS: Users declared to have a good opinion of existing signage in the three hospitals analyzed as well as their architectural organization in terms of their capacity to orient people. However, the vast majority of users asked for directions to navigate within the hospital to staff and medical personnel. CONCLUSIONS: Patient navigation problems are imposing a great "hidden" cost to hospitals management due to missed appointments.
Subject(s)
Hospital Design and Construction/standards , Location Directories and Signs/standards , Orientation , Adolescent , Adult , Aged , Aged, 80 and over , Chile , Educational Status , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Young AdultSubject(s)
Exercise/psychology , Health Promotion/methods , Locomotion , Program Evaluation/statistics & numerical data , Adult , Chile , Female , Health Promotion/organization & administration , Humans , Male , Middle Aged , Motivation , Motor Activity , Self Concept , Surveys and Questionnaires , Young AdultABSTRACT
The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impacted endolysosomal and autophagosomal compartments, inhibiting autophagosome turnover and causing perinuclear clustering of autophagosomes, early and late endosomes, and lysosomes. Lysosomal iron chelation blocked all measured parameters of ART-induced PCD, whereas lysosomal iron loading enhanced death, thus identifying lysosomal iron as the lethal source of reactive oxygen species upstream of mitochondrial outer membrane permeabilization. Moreover, lysosomal inhibitors chloroquine and bafilomycin A1 reduced ART-activated PCD, evidencing a requirement for lysosomal function during PCD signaling. ART killing did not involve activation of the BH3-only protein, Bid, yet ART enhanced TNF-mediated Bid cleavage. We additionally demonstrated the lysosomal PCD pathway in T47D and MDA-MB-231 breast cancer cells. Importantly, non-tumorigenic MCF-10A cells resisted ART-induced PCD. Together, our data suggest that ART triggers PCD via engagement of distinct, interconnected PCD pathways, with hierarchical signaling from lysosomes to mitochondria, suggesting a potential clinical use of ART for targeting lysosomes in cancer treatment.
Subject(s)
Antimalarials/pharmacology , Apoptosis/drug effects , Artemisinins/pharmacology , Breast Neoplasms/metabolism , Iron/metabolism , Lysosomes/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Artesunate , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chloroquine/pharmacology , Enzyme Inhibitors/pharmacology , Female , Humans , Macrolides/pharmacology , Mitochondrial Membranes/metabolism , PermeabilityABSTRACT
The rat parvovirus H-1 (H-1PV) attracts high attention as an anticancer agent, because it is not pathogenic for humans and has oncotropic and oncosuppressive properties. The viral nonstructural NS1 protein is thought to mediate H-1PV cytotoxicity, but its exact contribution to this process remains undefined. In this study, we analyzed the effects of the H-1PV NS1 protein on human cell proliferation and cell viability. We show that NS1 expression is sufficient to induce the accumulation of cells in G(2) phase, apoptosis via caspase 9 and 3 activation, and cell lysis. Similarly, cells infected with wild-type H-1PV arrest in G(2) phase and undergo apoptosis. Furthermore, we also show that both expression of NS1 and H-1PV infection lead to higher levels of intracellular reactive oxygen species (ROS), associated with DNA double-strand breaks. Antioxidant treatment reduces ROS levels and strongly decreases NS1- and virus-induced DNA damage, cell cycle arrest, and apoptosis, indicating that NS1-induced ROS are important mediators of H-1PV cytotoxicity.
Subject(s)
Apoptosis , H-1 parvovirus/metabolism , Parvoviridae Infections/metabolism , Parvoviridae Infections/physiopathology , Reactive Oxygen Species/metabolism , Viral Nonstructural Proteins/metabolism , Cell Cycle , Cell Line , DNA Damage , H-1 parvovirus/genetics , Humans , Parvoviridae Infections/genetics , Parvoviridae Infections/virology , Viral Nonstructural Proteins/geneticsSubject(s)
Fitness Centers , Obesity/prevention & control , Overweight/prevention & control , Public Facilities , Chile , HumansABSTRACT
The search for cancer cell-specific targets suffers from a lack of integrative approaches that take into account the relative contributions of several mechanisms or pathways involved in cell death. A systematic experimental and computational comparison of murine glioma cells with astrocytes, their nontransformed counterparts, identified differences in the sphingolipid (SL) rheostat linked to an increased lysosomal instability in glioma cells. In vitro and in silico analyses indicate that sphingosine metabolized in lysosomes was preferentially recycled into ceramide, the prodeath member of the rheostat, in astrocytes. In glioma cells, it preferentially was used for production of the prosurvival sphingosine-1-phosphate (S1P). A combination of tumor necrosis factor alpha (TNF-alpha), lipopolysaccharide (LPS), and interferon gamma (IFN-gamma) strongly decreased S1P production that resulted in abnormal lysosome enlargement and cell death associated with mitochondrial dysfunction of glioma cells only. Lack of intracellular S1P in glioma cells was concomitant with protein and lipid accumulation in enlarged lysosomes, indicating a blockade in lysosome recycling, and hence a role for S1P in membrane trafficking. A pharmacological sphingosine kinase inhibitor efficiently replaced the TNF-alpha, LPS, and IFN-gamma combination and killed murine and human glioma cells without affecting astrocytes. Our study provides evidence for a novel mechanism of lysosomal death dependent upon the SL rheostat that can be specifically triggered in glioma cells. It further strengthens the potential of cancer therapies based on specific ceramide pathway alterations.
Subject(s)
Autophagy/physiology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Glioma/metabolism , Glioma/pathology , Lysosomes/metabolism , Sphingolipids/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Autophagy/drug effects , Brain Neoplasms/drug therapy , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cell Transformation, Neoplastic/pathology , Glioma/drug therapy , Humans , Inflammation Mediators/pharmacology , Lipopolysaccharides/pharmacology , Lysosomes/drug effects , Mice , Protein Transport/physiology , Signal Transduction/drug effects , Signal Transduction/physiologyABSTRACT
BACKGROUND: This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD), insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. METHODS: We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G) and a fructose-rich diet group (60% fructose). The animals were tested for maximal lactate-steady state (MLSS) in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol). Another third were submitted to the training from 90 to 120 days (late protocol), and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT) and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. RESULTS: The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. CONCLUSIONS: The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease.
Subject(s)
Exercise Therapy/methods , Fatty Liver/chemically induced , Fatty Liver/therapy , Fructose/adverse effects , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Dietary Supplements/adverse effects , Fatty Liver/blood , Insulin Resistance/physiology , Liver/metabolism , Male , Rats , Rats, Wistar , Triglycerides/bloodABSTRACT
OBJECTIVE: To use adaptive genetic algorithms (AGA) in combination with single-cell flow cytometry technology to develop a noninvasive test to detect bladder cancer. MATERIALS AND METHODS: Fifty high grade, cystoscopy confirmed, superficial bladder cancer patients, and 15 healthy donor early morning urine samples were collected in an optimized urine collection media. These samples were then used to develop an assay to distinguish healthy from cancer patients' urine using AGA in combination with single-cell flow cytometry technology. Cell recovery and test performance were verified based on cystoscopy and histology for both bladder cancer determination and PD-L1 status. RESULTS: Bladder cancer patients had a significantly higher percentage of white blood cells with substantial PD-L1 expression (P< 0.0001), significantly increased post-G1 epithelial cells (P < 0.005) and a significantly higher DNA index above 1.05 (P < 0.05). AGA allowed parameter optimization to differentiate normal from malignant cells with high accuracy. The resulting prediction model showed 98% sensitivity and 87% specificity with a high area under the ROC value (90%). CONCLUSIONS: Using single-cell technology and machine learning; we developed a new assay to distinguish bladder cancer from healthy patients. Future studies are planned to validate this assay.
Subject(s)
Algorithms , Biomarkers, Tumor/urine , Immunotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/urine , Aged , Female , Flow Cytometry/methods , Humans , Male , Neoplasm Invasiveness , Sensitivity and Specificity , Single-Cell Analysis , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/geneticsABSTRACT
Objective: Anti-DFS70 antibodies correlating with the nuclear dense fine speckled (DFS) pattern in the HEp-2 indirect immunofluorescence assay (IFA) are less common in patients with systemic autoimmune rheumatic disease (SARD) than in healthy subjects and their clinical associations remain elusive. We hosted a multi-center HEp-2 IFA training program to improve the ability of clinical laboratories to recognize the DFS pattern and to investigate the prevalence and relevance of anti-DFS70 antibodies. Methods: DFS pattern sera identified by HEp-2 IFA in 29 centers in China were redirected to a central laboratory for anti-DFS70 testing by line immunoblot assay (LIA), enzyme-linked immunosorbent assay (ELISA), and IFA with HEp-2 ELITE/DFS70-KO substrate. Anti-extractable nuclear antigen antibodies were measured by LIA and the clinical relevance was examined in adult and pediatric patients. Results: HEp-2 IFA positive rate and DFS pattern in positive sera were 36.2% (34,417/95,131) and 1.7% (582/34,417) in the patient cohort, and 10.0% (423/4,234) and 7.8% (33/423) in a healthy population, respectively. Anti-DFS70 prevalence among sera presenting the DFS pattern was 96.0, 93.7, and 49.6% by ELISA, LIA, and HEp-2 ELITE, respectively. 15.5% (52/336) of adult and 50.0% (20/40) of pediatric anti-DFS70 positive patients were diagnosed with SARD. Diseases most common in anti-DFS70 positive patients were spontaneous abortion (28.0%) in adults and juvenile idiopathic arthritis (22.5%) in pediatric patients. Conclusion: Accurate DFS pattern identification increased the detection rate of anti-DFS70 antibodies by ELISA and LIA. Anti-DFS70 antibodies are remarkably high in cases of spontaneous abortion and in pediatric SARD patients, but not prevalent in adult SARD patients.
Subject(s)
Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/immunology , Adaptor Proteins, Signal Transducing/immunology , Arthritis, Juvenile/epidemiology , Arthritis, Juvenile/immunology , Autoantibodies/blood , Transcription Factors/immunology , Abortion, Spontaneous/blood , Adult , Arthritis, Juvenile/blood , Autoantibodies/immunology , Child , China/epidemiology , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique, Indirect , Humans , Male , Phenotype , Pregnancy , PrevalenceABSTRACT
The role of microglia, the brain resident macrophages, in glioma biology is still ill-defined. Despite their cytotoxic potential, these cells that significantly infiltrate the tumor mass seem to support tumor growth rather than tumor eradication. A proper activation of microglia anti-tumor activities within the tumor may provide a valuable additional arm of defense to immunotherapies against brain tumors. We herewith report a detailed characterization of (lipopolysaccharide and interferon-gamma)-induced anti-tumor activities of mouse primary microglia towards two TNF-alpha and TRAIL resistant glioma cell lines, in cell monolayer or spheroid cultures and in collagen-embedded tumor explants. Irrespective of the mouse strain, stimulated microglia secreted proteic factors that decreased proliferation and migration of these glioma cells and efficiently killed them. Death occurred specifically in glioma cells as demonstrated by the lack of toxicity of microglia supernatant towards primary cultures of astrocytes or neurons. Cell death was characterized by the early accumulation of acidic vesicles, phosphatidylserine exposure, appearance of double-membrane cytoplasmic vesicles, extensive zeiosis and a very late loss of DNA in cells that had lost membrane integrity. Inhibition of autophagosome formation efficiently protected glioma cells from death whereas caspase inhibition could only prevent DNA loss but not cytotoxicity. Death however, resulted from a blockade by microglia supernatant of the basal autophagic flux present in the glioma cells. These observations demonstrate that glioma cells resistant to apoptotic death ligands could be successfully and specifically killed through autophagy-dependent death induced by appropriately activated microglia.
Subject(s)
Autophagy , Glioma/pathology , Microglia/physiology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Caspase Inhibitors , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Collagen , DNA/metabolism , Glioma/physiopathology , In Vitro Techniques , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide/metabolism , Oligopeptides/metabolism , Phosphatidylserines/metabolismABSTRACT
MicroRNAs (miRNAs) are small noncoding RNAs that function in post-transcriptional regulation of gene expression. Dysregulation of miRNAs has been reported in different stages of cancer development and progression. This dysregulation results in different miRNA profiles between cancer and normal tissues. Many studies have shown a significant correlation between miRNA profile and cancer diagnosis and prognosis. Additionally, since a single miRNA regulates multiple mRNA targets, miRNAs dysregulation can affect several pathways involved in cancer development. Finally, due to their regulatory role in immune cell development, many recent studies have reported that certain miRNAs play key roles in cancer immunology. In this brief review, we discuss the role of miR-21 and miR-375 in the RAS pathway as well as their role in cancer diagnosis and progression, along with the role of other select miRNAs in cancer immune surveillance.
Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Immune System/metabolism , MicroRNAs/genetics , Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Disease Progression , Gene Expression Regulation, Neoplastic/immunology , Humans , Immune System/immunology , MicroRNAs/immunology , Neoplasms/diagnosis , Neoplasms/immunology , Prognosis , Signal Transduction/genetics , Signal Transduction/immunologyABSTRACT
Acute muscle tissue damage, myonecrosis, is a typical consequence of envenomations by snakes of the family Viperidae. Catalytically-inactive Lys49 phospholipase A(2) homologues are abundant myotoxic components in viperid venoms, causing plasma membrane damage by a mechanism independent of phospholipid hydrolysis. However, the precise mode of action of these myotoxins remains unsolved. In this work, a cell culture model of C2C12 myotubes was used to assess the action of Bothrops asper myotoxin II (Mt-II), a Lys49 phospholipase A(2) homologue. Mt-II induced a dose- and time-dependent cytotoxic effect associated with plasma membrane disruption, evidenced by the release of the cytosolic enzyme lactate dehydrogenase and the penetration of propidium iodide. A rapid increment in cytosolic Ca(2+) occurred after addition of Mt-II. Such elevation was associated with hypercontraction of myotubes and blebbing of plasma membrane. An increment in the Ca(2+) signal was observed in myotube nuclei. Elimination of extracellular Ca(2+) resulted in increased cytotoxicity upon incubation with Mt-II, suggesting a membrane-protective role for extracellular Ca(2+). Chelation of cytosolic Ca(2+) with BAPTA-AM did not modify the cytotoxic effect, probably due to the large increment induced by Mt-II in cytosolic Ca(2+) which overrides the chelating capacity of BAPTA-AM. It is concluded that Mt-II induces rapid and drastic plasma membrane lesion and a prominent Ca(2+) influx in myotubes. Extracellular Ca(2+) plays a dual role in this model: it protects the membrane from the cytolytic action of the toxin; at the same time, the Ca(2+) influx that occurs after membrane disruption is likely to play a key role in the intracellular degenerative events associated with Mt-II-induced myotube damage.
Subject(s)
Bothrops/physiology , Calcium/metabolism , Crotalid Venoms/toxicity , Group II Phospholipases A2/chemistry , Group II Phospholipases A2/toxicity , Muscle Fibers, Skeletal/drug effects , Reptilian Proteins/chemistry , Reptilian Proteins/toxicity , Animals , Cell Line , Cytosol/metabolism , Mice , Muscle, Skeletal/cytologyABSTRACT
A catalytically-inactive Lys49 phospholipase A2 homologue from the venom of the snake Bothrops asper induces diverse effects (necrosis, apoptosis and proliferation) in a lymphoblastoid cell line, depending on the toxin concentration. The increments in cytosolic Ca2+ levels induced by this toxin in this cell line were assessed. At high toxin concentration (100 microg/mL) the toxin induces drastic disruption of the plasma membrane, associated with a prominent Ca2+ influx and necrosis. Previous incubation of the cells with the chelating agent EGTA or with ruthenium red, an inhibitor of the uniporter mitochondrial Ca2+ transport, greatly reduced necrosis. At a toxin concentration of 12.5 microg/mL, apoptosis is the predominant response, being associated with lower increments in cytosolic Ca2+. This effect was inhibited by preincubation with ruthenium red and the cytosolic Ca2+ chelator BAPTA-AM. The proliferative response, which occurs at a low toxin concentration (0.5 microg/mL), is associated with a small and oscillatory increment in cytosolic Ca2+. It was inhibited by EGTA, ruthenium red and BAPTA-AM, by inhibitors of the endoplasmic reticulum Ca2+ -ATPase (SERCA) and by blockade of the ryanodine receptor. It is concluded that necrosis and apoptosis induced by this toxin are associated with increments in cytosolic Ca2+ levels following plasma membrane perturbation, together with the involvement of mitochondria. The cellular proliferative response depends on a limited Ca2+ influx through the plasma membrane, being associated with a concerted functional unit constituted by SERCA, the ryanodine receptor and mitochondria, which regulate the observed oscillations in cytosolic Ca2+ concentration.
Subject(s)
Apoptosis/drug effects , Calcium/metabolism , Cytosol/drug effects , Lymphocytes/cytology , Lysine/chemistry , Phospholipases A/toxicity , Snake Venoms/toxicity , Animals , Calcium/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Cell Line , Chelating Agents/pharmacology , Cytosol/metabolism , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Mitochondria/metabolism , Necrosis/chemically induced , Phospholipases A/metabolism , Phospholipases A2 , Ruthenium Red/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Snake Venoms/enzymology , Time FactorsABSTRACT
Resumen Introducción: La disciplina científica de la bioinformática tiene el potencial de generar aplicaciones innovadoras para las sociedades humanas. Costa Rica, pequeña en tamaño y población en comparación con otros países de América Latina, ha ido adoptando la disciplina de manera progresiva. El reconocer los avances permite determinar hacia dónde puede dirigirse el país en este campo, así como su contribución a la región latinoamericana. Objetivo: En este manuscrito se reporta evidencia de la evolución de la bioinformática en Costa Rica, para identificar debilidades y fortalezas que permitan definir acciones a futuro. Métodos: Se realizaron búsquedas en bases de datos de publicaciones científicas y repositorios de secuencias, así como información de actividades de capacitación, redes, infraestructura, páginas web y fuentes de financiamiento. Resultados: Se observan avances importantes desde el 2010, incluyendo un aumento en oportunidades de entrenamiento y número de publicaciones, aportes significativos a las bases de datos de secuencias y conexiones por medio de redes. Sin embargo, ciertas áreas, como la masa crítica y la financiación requieren más desarrollo. La comunidad científica y sus patrocinadores deben promover la investigación basada en bioinformática, invertir en la formación de estudiantes de posgrado, aumentar la formación de profesionales, crear oportunidades laborales para carreras en bioinformática y promover colaboraciones internacionales a través de redes. Conclusiones: Se sugiere que para experimentar los beneficios de las aplicaciones de la bioinformática se deben fortalecer tres aspectos clave: la comunidad científica, la infraestructura de investigación y las oportunidades de financiamiento. El impacto de tal inversión sería el desarrollo de proyectos ambiciosos pero factibles y colaboraciones extendidas dentro de la región latinoamericana. Esto permitiría realizar contribuciones significativas para abordar los desafíos globales y la aplicación de nuevos enfoques de investigación, innovación y transferencia de conocimiento para el desarrollo de la economía, dentro de un marco de ética de la investigación.
Abstract Introduction: The scientific discipline of bioinformatics has the potential to generate innovative applications for human societies. Costa Rica, small in size and population compared to other Latin American countries, has been progressively adopting the discipline. Recognizing progress makes it possible to determine where the country can go in this field, as well as its contribution to the Latin American region. Objective: This manuscript reports evidence of the evolution of bioinformatics in Costa Rica, to identify weaknesses and strengths allowing future actions plans. Methods: We searched databases of scientific publications and sequence repositories, as well as information on training activities, networks, infrastructure, web pages and funding sources. Results: Important advances have been observed since 2010, such as increases in training opportunities and the number of publications, significant contributions to the sequence databases and connections through networks. However, areas such as critical mass and financing require further development. The scientific community and its sponsors should promote bioinformatics-based research, invest in graduate student training, increase professional training, create career opportunities in bioinformatics, and promote international collaborations through networks. Conclusions: It is suggested that in order to experience the benefits of bioinformatics applications, three key aspects must be strengthened: the scientific community, the research infrastructure, and funding opportunities. The impact of such investment would be the development of ambitious but feasible projects and extended collaborations within the Latin American region and abroad. This would allow significant contributions to address global challenges and the implementation of new approaches to research, innovation and knowledge transfer for the development of the economy, within an ethics of research framework.
Subject(s)
Computational Biology/trends , Data Management , Costa RicaABSTRACT
BACKGROUND: Biopiracy mainly focuses on the use of biological resources and/or knowledge of indigenous tribes or communities without allowing them to share the revenues generated out of economic exploitation or other non-monetary incentives associated with the resource/knowledge. METHODS: Based on collaborations of scientists from five continents, we have created a communication platform to discuss not only scientific topics, but also more general issues with social relevance. This platform was termed 'PhytCancer -Phytotherapy to Fight Cancer' (www.phyt-cancer.uni-mainz.de). As a starting point, we have chosen the topic "biopiracy", since we feel this is of pragmatic significance for scientists working with medicinal plants. RESULTS: It was argued that the patenting of herbs or natural products by pharmaceutical corporations disregarded the ownership of the knowledge possessed by the indigenous communities on how these substances worked. Despite numerous court decisions in U.S.A. and Europe, several international treaties, (e.g. from United Nations, World Health Organization, World Trade Organization, the African Unity and others), sharing of a rational set of benefits amongst producers (mainly pharmaceutical companies) and indigenous communities is yet a distant reality. In this paper, we present an overview of the legal frameworks, discuss some exemplary cases of biopiracy and bioprospecting as excellent forms of utilization of natural resources. CONCLUSIONS: We suggest certain perspectives, by which we as scientists, may contribute towards prevention of biopiracy and also to foster the fair utilization of natural resources. We discuss ways, in which the interests of indigenous people especially from developing countries can be secured.