Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Chem Inf Model ; 63(9): 2810-2827, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37071825

ABSTRACT

We present a comparative study that evaluates the performance of a machine learning potential (ANI-2x), a conventional force field (GAFF), and an optimally tuned GAFF-like force field in the modeling of a set of 10 γ-fluorohydrins that exhibit a complex interplay between intra- and intermolecular interactions in determining conformer stability. To benchmark the performance of each molecular model, we evaluated their energetic, geometric, and sampling accuracies relative to quantum-mechanical data. This benchmark involved conformational analysis both in the gas phase and chloroform solution. We also assessed the performance of the aforementioned molecular models in estimating nuclear spin-spin coupling constants by comparing their predictions to experimental data available in chloroform. The results and discussion presented in this study demonstrate that ANI-2x tends to predict stronger-than-expected hydrogen bonding and overstabilize global minima and shows problems related to inadequate description of dispersion interactions. Furthermore, while ANI-2x is a viable model for modeling in the gas phase, conventional force fields still play an important role, especially for condensed-phase simulations. Overall, this study highlights the strengths and weaknesses of each model, providing guidelines for the use and future development of force fields and machine learning potentials.


Subject(s)
Chloroform , Quantum Theory , Models, Molecular , Molecular Conformation , Hydrogen Bonding
2.
J Chem Inf Model ; 61(4): 2026-2047, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33750120

ABSTRACT

The ensemble of structures generated by molecular mechanics (MM) simulations is determined by the functional form of the force field employed and its parameterization. For a given functional form, the quality of the parameterization is crucial and will determine how accurately we can compute observable properties from simulations. While accurate force field parameterizations are available for biomolecules, such as proteins or DNA, the parameterization of new molecules, such as drug candidates, is particularly challenging as these may involve functional groups and interactions for which accurate parameters may not be available. Here, in an effort to address this problem, we present ParaMol, a Python package that has a special focus on the parameterization of bonded and nonbonded terms of druglike molecules by fitting to ab initio data. We demonstrate the software by deriving bonded terms' parameters of three widely known drug molecules, viz. aspirin, caffeine, and a norfloxacin analogue, for which we show that, within the constraints of the functional form, the methodologies implemented in ParaMol are able to derive near-ideal parameters. Additionally, we illustrate the best practices to follow when employing specific parameterization routes. We also determine the sensitivity of different fitting data sets, such as relaxed dihedral scans and configurational ensembles, to the parameterization procedure, and discuss the features of the various weighting methods available to weight configurations. Owing to ParaMol's capabilities, we propose that this software can be introduced as a routine step in the protocol normally employed to parameterize druglike molecules for MM simulations.


Subject(s)
Molecular Dynamics Simulation , Software , Proteins
3.
J Chem Theory Comput ; 17(11): 7021-7042, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34644088

ABSTRACT

Conformational analysis is of paramount importance in drug design: it is crucial to determine pharmacological properties, understand molecular recognition processes, and characterize the conformations of ligands when unbound. Molecular Mechanics (MM) simulation methods, such as Monte Carlo (MC) and molecular dynamics (MD), are usually employed to generate ensembles of structures due to their ability to extensively sample the conformational space of molecules. The accuracy of these MM-based schemes strongly depends on the functional form of the force field (FF) and its parametrization, components that often hinder their performance. High-level methods, such as ab initio MD, provide reliable structural information but are still too computationally expensive to allow for extensive sampling. Therefore, to overcome these limitations, we present a multilevel MC method that is capable of generating quantum configurational ensembles while keeping the computational cost at a minimum. We show that FF reparametrization is an efficient route to generate FFs that reproduce QM results more closely, which, in turn, can be used as low-cost models to achieve the gold standard QM accuracy. We demonstrate that the MC acceptance rate is strongly correlated with various phase space overlap measurements and that it constitutes a robust metric to evaluate the similarity between the MM and QM levels of theory. As a more advanced application, we present a self-parametrizing version of the algorithm, which combines sampling and FF parametrization in one scheme, and apply the methodology to generate the QM/MM distribution of a ligand in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL