Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Biol Evol ; 33(3): 621-42, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26556496

ABSTRACT

Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of inconsistencies in xenarthran systematics and species definition. We propose to split armadillos into two distinct families Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their ancient divergence, estimated around 42 Ma. Species delimitation within long-nosed armadillos (genus Dasypus) appeared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed during the last 15 My. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the Guiana Shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry habitats.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Genomics , Phylogeny , Xenarthra/classification , Xenarthra/genetics , Animals , Bayes Theorem , Biological Evolution , Computational Biology , High-Throughput Nucleotide Sequencing
3.
BMC Evol Biol ; 12: 36, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22429690

ABSTRACT

BACKGROUND: Xenarthra (sloths, armadillos and anteaters) represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. RESULTS: Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome). B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4). The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. CONCLUSIONS: Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.


Subject(s)
Chromosomes/genetics , Evolution, Molecular , Phylogeny , Sloths/genetics , Animals , Chromosome Painting , Humans , Karyotype
4.
Genome Biol Evol ; 8(3): 607-21, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26878870

ABSTRACT

Macroevolutionary trends exhibited by retroviruses are complex and not entirely understood. The sloth endogenized foamy-like retrovirus (SloEFV), which demonstrates incongruence in virus-host evolution among extant sloths (Order Folivora), has not been investigated heretofore in any extinct sloth lineages and its premodern history within folivorans is therefore unknown. Determining retroviral coevolutionary trends requires a robust phylogeny of the viral host, but the highly reduced modern sloth fauna (6 species in 2 genera) does not adequately represent what was once a highly diversified clade (∼100 genera) of placental mammals. At present, the amount of molecular data available for extinct sloth taxa is limited, and analytical results based on these data tend to conflict with phylogenetic inferences made on the basis of morphological studies. To augment the molecular data set, we applied hybridization capture and next-generation Illumina sequencing to two extinct and three extant sloth species to retrieve full mitochondrial genomes (mitogenomes) from the hosts and the polymerase gene of SloEFV. The results produced a fully resolved and well-supported phylogeny that supports dividing crown families into two major clades: 1) The three-toed sloth, Bradypus, and Nothrotheriidae and 2) Megalonychidae, including the two-toed sloth, Choloepus, and Mylodontidae. Our calibrated time tree indicates that the Miocene epoch (23.5 Ma), particularly its earlier part, was an important interval for folivoran diversification. Both extant and extinct sloths demonstrate multiple complex invasions of SloEFV into the ancestral sloth germline followed by subsequent introgressions across different sloth lineages. Thus, sloth mitogenome and SloEFV evolution occurred separately and in parallel among sloths.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Retroviridae/genetics , Sloths/genetics , Animals , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Mammals/genetics , Phylogeny
5.
Ecol Evol ; 5(21): 4932-48, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26640672

ABSTRACT

The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and activation of the adaptive immune response and are thought to be regulated by natural selection, especially due to pathogen-driven selective pressure. In this study, we investigated the spatial distribution of MHC class II DRB exon 2 gene diversity of the lesser anteater (Tamandua tetradactyla) across five Brazilian biomes using next-generation sequencing and compared the MHC pattern with that of neutral markers (microsatellites). We found a noticeable high level of diversity in DRB (60 amino acid alleles in 65 individuals) and clear signatures of historical positive selection acting on this gene. Higher allelic richness and proportion of private alleles were found in rain forest biomes, especially Amazon forest, a megadiverse biome, possibly harboring greater pathogen richness as well. Neutral markers, however, showed a similar pattern to DRB, demonstrating the strength of demography as an additional force to pathogen-driven selection in shaping MHC diversity and structure. This is the first characterization and description of diversity of a MHC gene for any member of the magna-order Xenarthra, one of the basal lineages of placental mammals.

6.
Mol Ecol Resour ; 14(3): 531-40, 2014 May.
Article in English | MEDLINE | ID: mdl-24345284

ABSTRACT

Tamandua tetradactyla (Pilosa), the lesser anteater, is a medium-size mammal from South America. Its wide distribution through different landscapes, solitary and nocturnal habits, and the difficulty to capture and contain specimens limit the amount of individuals and populations sampled during fieldworks. These features along with the lack of specific molecular markers for the lesser anteater might be the causes for paucity in population genetic studies for the species. Historical samples from museum specimens, such as skins, and non-invasive samples, such as plucked hair, can be supplementary sources of DNA samples. However, the DNA quantity and quality of these samples may be limiting factors in molecular studies. In this study, we describe nine microsatellite loci for T. tetradactyla and test the amplification success, data reliability and estimate errors on both historical and non-invasive sample sets. We tested nine polymorphic microsatellites and applied the quality index approach to evaluate the relative performance in genotype analysis of 138 historical samples (study skin) and 19 non-invasive samples (plucked hair). The observed results show a much superior DNA quality of non-invasive over historical samples and support the quality index analysis as a practical tool to exclude samples with doubtful performance in genetic studies. We also found a relationship between the age of non-invasive samples and DNA quality, but lack of evidence of this pattern for historical samples.


Subject(s)
Microsatellite Repeats , Xenarthra/classification , Xenarthra/genetics , Animals , Genotype , Molecular Sequence Data , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards
7.
Mol Ecol Resour ; 10(4): 732-4, 2010 Jul.
Article in English | MEDLINE | ID: mdl-21565080

ABSTRACT

The three-toed sloths (Bradypus) are slow-moving arboreal neotropical mammals. Understanding demographic variables (such as sex ratio) of populations is a key for conservation purposes. Nevertheless, gender assignment of Bradypus is particularly challenging because of the lack of sexual dimorphism in infants and in adults, particularly B. torquatus, the most endangered of the three-toed sloths, in which sex is attributed by visual observation of the reproductively active males. Here, we standardized a method for sexing Bradypus individuals using PCR-RFLP of sex-linked genes ZFX/ZFY. This assay was validated with known-gender animals and proved accurate to assign gender on three Bradypus species.

8.
Genetica ; 126(1-2): 189-98, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16502095

ABSTRACT

The comparative phylogeographic study of the maned sloth (Bradypus torquatus) and the three-toed sloth (Bradypus variegatus) was performed using a segment of mitochondrial DNA (mtDNA) control region. We examined 19 B. torquatus from two regions and 47 B. variegatus from three distant regions of Atlantic forest. This first characterization of molecular diversity indicates a great diversity (B. torquatus: h = 0.901 +/- 0.039 and pi = 0.012 +/- 0.007; B. variegatus: h = 0.699 +/- 0.039 and pi = 0.010 +/- 0.006) and very divergent mitochondrial lineages within each sloth species. The different sampled regions carry distinct and non-overlapping sets of mtDNA haplotypes and are genetically divergent. This phylogeographic pattern may be characteristic of sloth species. In addition, we infer that two main phylogeographic groups exist in the Atlantic forest representing a north and south distinct divergence.


Subject(s)
Phylogeny , Sloths/genetics , Animals , Brazil , DNA, Mitochondrial , Genetic Variation , Geography , Locus Control Region/genetics , Mitochondria/genetics
9.
Genet. mol. biol ; 30(4): 1181-1185, 2007. ilus, tab
Article in English | LILACS | ID: lil-471047

ABSTRACT

Museum collections have been widely used as sources of biological samples for molecular biology studies and there are several methodologies and techniques to obtain and analyze DNA from tissues archived in museums, but most of these protocols have been developed for a specific tissue or are commercial kits. We present a simple protocol for extracting and amplifying DNA segments from sloth museum specimens. With this simple protocol we analyzed DNA fragments from 64 percent of 64 skin samples from three-toed sloths (Bradypus variegatus and Bradypus tridactylus) archived in three different museums: 43 samples from the University of São Paulo Museum of Zoology (Museu de Zoologia da Universidade de São Paulo, MUZUSP) São Paulo, São Paulo, Brazil; 18 samples from the Emílio Goeldi Museum (Museu Paraense Emílio Goeldi, MPEG), Belém, Pará, Brazil; and 3 samples from the Museum of Vertebrate Zoology (MVZ) University of California, Berkeley, USA. The specimens sampled ranged in age from 18 to 108 years old. Our methodology allowed the recovery of up to 700 bp of mitochondrial DNA and 400 bp of nuclear genes. Thereafter, it is useful for genetic diversity studies of three-toed sloths and could be applied to other animals.

SELECTION OF CITATIONS
SEARCH DETAIL