Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Rev Genet ; 20(8): 485-493, 2019 08.
Article in English | MEDLINE | ID: mdl-30886351

ABSTRACT

The tree of life is resplendent with examples of convergent evolution, whereby distinct species evolve the same trait independently. Many highly convergent adaptations are also complex, which makes their repeated emergence surprising. In plants, the evolutionary history of two carbon concentrating mechanisms (CCMs) - C4 and crassulacean acid metabolism (CAM) photosynthesis - presents such a paradox. Both of these modifications of ancestral C3 photosynthesis require the integration of multiple anatomical and biochemical components, yet together they have evolved more than one hundred times. The presence of CCM enzymes in all plants suggests that a rudimentary CCM might emerge via relatively few genetic changes in potentiated lineages. Here, we propose that many of the complexities often associated with C4 and CAM photosynthesis may have evolved during a post-emergence optimization phase. The ongoing development of new model clades for young, emerging CCMs is enabling the comparative studies needed to test these ideas.


Subject(s)
Photosynthesis/genetics , Plants/genetics , Adaptation, Physiological/genetics , Carbon/metabolism , Evolution, Molecular
2.
Plant Physiol ; 189(2): 735-753, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35285495

ABSTRACT

C4 photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent adaptations despite sharing key biochemical modules. Portulaca is a geographically widespread clade of over 100 annual and perennial angiosperm species that primarily use C4 but facultatively exhibit CAM when drought stressed, a photosynthetic system known as C4 + CAM. It has been hypothesized that C4 + CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We generated a chromosome-level genome assembly of Portulaca amilis and sampled mRNA from P. amilis and Portulaca oleracea during CAM induction. Gene co-expression network analyses identified C4 and CAM gene modules shared and unique to both Portulaca species. A conserved CAM module linked phosphoenolpyruvate carboxylase to starch turnover during the day-night transition and was enriched in circadian clock regulatory motifs in the P. amilis genome. Preservation of this co-expression module regardless of water status suggests that Portulaca constitutively operate a weak CAM cycle that is transcriptionally and posttranscriptionally upregulated during drought. C4 and CAM mostly used mutually exclusive genes for primary carbon fixation, and it is likely that nocturnal CAM malate stores are shuttled into diurnal C4 decarboxylation pathways, but we found evidence that metabolite cycling may occur at low levels. C4 likely evolved in Portulaca through co-option of redundant genes and integration of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C4 evolution because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.


Subject(s)
Crassulacean Acid Metabolism , Portulaca , Crassulacean Acid Metabolism/genetics , Droughts , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis/genetics , Portulaca/metabolism
3.
Proc Natl Acad Sci U S A ; 116(10): 4416-4425, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30787193

ABSTRACT

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.


Subject(s)
DNA, Plant/genetics , Gene Transfer, Horizontal , Genes, Plant , Poaceae/genetics , Chromosomes, Plant , Phylogeny , Poaceae/classification
4.
New Phytol ; 225(4): 1699-1714, 2020 02.
Article in English | MEDLINE | ID: mdl-31610019

ABSTRACT

Although biochemically related, C4 and crassulacean acid metabolism (CAM) systems are expected to be incompatible. However, Portulaca species, including P. oleracea, operate C4 and CAM within a single leaf, and the mechanisms behind this unique photosynthetic arrangement remain largely unknown. Here, we employed RNA-seq to identify candidate genes involved exclusively or shared by C4 or CAM, and provided an in-depth characterization of their transcript abundance patterns during the drought-induced photosynthetic transitions in P. oleracea. Data revealed fewer candidate CAM-specific genes than those recruited to function in C4 . The putative CAM-specific genes were predominantly involved in night-time primary carboxylation reactions and malate movement across the tonoplast. Analysis of gene transcript-abundance regulation and photosynthetic physiology indicated that C4 and CAM coexist within a single P. oleracea leaf under mild drought conditions. Developmental and environmental cues were shown to regulate CAM expression in stems, whereas the shift from C4 to C4 -CAM hybrid photosynthesis in leaves was strictly under environmental control. Moreover, efficient starch turnover was identified as part of the metabolic adjustments required for CAM operation in both organs. These findings provide insights into C4 /CAM connectivity and compatibility, contributing to a deeper understanding of alternative ways to engineer CAM into C4 crop species.


Subject(s)
Arabidopsis Proteins/physiology , Crassulacean Acid Metabolism/physiology , Photosystem II Protein Complex/physiology , Plant Leaves/metabolism , Portulaca/physiology , Adaptation, Physiological , Chlorophyll A/genetics , Chlorophyll A/metabolism , Gene Expression Regulation, Plant/physiology , Plant Stems/physiology , Plant Transpiration , RNA, Plant/genetics , RNA, Plant/metabolism
5.
Ecol Lett ; 22(2): 302-312, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30557904

ABSTRACT

C4 photosynthesis is a complex trait that boosts productivity in warm environments. Paradoxically, it evolved independently in numerous plant lineages, despite requiring specialised leaf anatomy. The anatomical modifications underlying C4 evolution have previously been evaluated through interspecific comparisons, which capture numerous changes besides those needed for C4 functionality. Here, we quantify the anatomical changes accompanying the transition between non-C4 and C4 phenotypes by sampling widely across the continuum of leaf anatomical traits in the grass Alloteropsis semialata. Within this species, the only trait that is shared among and specific to C4 individuals is an increase in vein density, driven specifically by minor vein development that yields multiple secondary effects facilitating C4 function. For species with the necessary anatomical preconditions, developmental proliferation of veins can therefore be sufficient to produce a functional C4 leaf anatomy, creating an evolutionary entry point to complex C4 syndromes that can become more specialised.


Subject(s)
Photosynthesis , Poaceae , Plant Leaves/anatomy & histology , Plants
6.
Mol Biol Evol ; 35(1): 94-106, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29040657

ABSTRACT

Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.


Subject(s)
Photosynthesis/genetics , Poaceae/genetics , Biological Evolution , Evolution, Molecular , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genome, Plant/genetics , Phylogeny , Plant Leaves/genetics , Transcriptome/genetics
7.
J Exp Bot ; 70(12): 3255-3268, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30949663

ABSTRACT

C4 photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared with C3 species, the C4 state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass Alloteropsis semialata, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically informed comparative transcriptomics show that intermediates with a weak C4 cycle are separated from the C3 phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C4 enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxylase. The subsequent transition to full C4 physiology was accompanied by increases in another 15 genes (0.06%), including only the core C4 enzyme pyruvate orthophosphate dikinase. These changes probably created a rudimentary C4 physiology, and isolated populations subsequently improved this emerging C4 physiology, resulting in a patchwork of expression for some C4 accessory genes. Our work shows how C4 assembly in A. semialata happened in incremental steps, each requiring few alterations over the previous step. These create short bridges across adaptive landscapes that probably facilitated the recurrent origins of C4 photosynthesis through a gradual process of evolution.


Subject(s)
Carbon/metabolism , Gene Expression , Poaceae/physiology , Biological Evolution , Phenotype , Poaceae/enzymology , Poaceae/genetics
8.
J Exp Bot ; 69(8): 1967-1980, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29394370

ABSTRACT

The importance of gene duplication for evolutionary diversification has been mainly discussed in terms of genetic redundancy allowing neofunctionalization. In the case of C4 photosynthesis, which evolved via the co-option of multiple enzymes to boost carbon fixation in tropical conditions, the importance of genetic redundancy has not been consistently supported by genomic studies. Here, we test for a different role for gene duplication in the early evolution of C4 photosynthesis, via dosage effects creating rapid step changes in expression levels. Using genome-wide data for accessions of the grass genus Alloteropsis that recently diversified into different photosynthetic types, we estimate gene copy numbers and demonstrate that recurrent duplications in two important families of C4 genes coincided with increases in transcript abundance along the phylogeny, in some cases via a pure dosage effect. While increased gene copy number during the initial emergence of C4 photosynthesis probably offered a rapid route to enhanced expression, we also find losses of duplicates following the acquisition of genes encoding better-suited isoforms. The dosage effect of gene duplication might therefore act as a transient process during the evolution of a C4 biochemistry, rendered obsolete by the fixation of regulatory mutations increasing expression levels.


Subject(s)
Gene Dosage , Gene Duplication , Photosynthesis , Plant Proteins/genetics , Poaceae/genetics , Biological Evolution , Phylogeny , Poaceae/classification , Poaceae/metabolism
9.
Sci Adv ; 8(31): eabn2349, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35930634

ABSTRACT

C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as distinct and incompatible adaptations. Portulaca contains multiple C4 species that perform CAM when droughted. Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in Portulaca oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression findings and predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photosynthetic metabolism presents a potential new blueprint for crop improvement.

10.
Evolution ; 71(6): 1541-1555, 2017 06.
Article in English | MEDLINE | ID: mdl-28395112

ABSTRACT

The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origins of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations.


Subject(s)
Biological Evolution , Photosynthesis , Poaceae , Adaptation, Physiological , Phenotype , Phylogeny , Poaceae/genetics , Poaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL