Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Chemistry ; 30(32): e202400666, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38577933

ABSTRACT

While π-complexes of C=C bonds are ubiquitous in organometallic chemistry, analogous complexes of the isoelectronic but strongly polarized B=N double bond of aminoboranes are extremely scarce. To address this gap, a diphosphine-aminoborane ligand (PhDPBAiPr) is introduced and its coordination with group 10 metals is investigated. The B=N bond does not coordinate to the metal in Pt(0) and Pd(II) complexes. In contrast, side-on coordination of the B=N bond is observed in the Ni(0) complex (PhDPBAiPr)Ni(NCPh), and the X-ray crystal structure reveals B-N bond elongation compared to the free ligand. The choice of co-ligand strongly influences the presence or absence of side-on coordination at Ni(0) as evidenced by NMR spectroscopy. While the B=N π-complex is geometrically similar to C=C analogues, a bonding analysis reveals that the interaction of the B=N motif with the electron-rich Ni(0) center is best described as 3c4e hyperbond, in which Ni and N are competing for the empty orbital on B.

2.
Angew Chem Int Ed Engl ; 63(11): e202319899, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38226565

ABSTRACT

Low-valent silicon compounds such as neutral silylenes display versatile reactivity for the activation of small molecules. In contrast, their anionic congeners silanides ([R3 Si- ]) have primarily been investigated for their nucleophilic reactivity. Here we show that incorporating a silanide center in a bicyclic cage structure allows for formal oxidative addition of polar element-hydrogen bonds (RX-H, R=aromatic residue, X=O, S, NH). The resulting hydrosilicates were isolated and characterized structurally and spectroscopically. Density Functional Theory (DFT) calculations and experimental observations support an ionic mechanism for RX-H bond activation. Finally, the reactivity of the RS-H bond adduct was further investigated, revealing that it behaves as a Lewis pair upon facile heterolytic cleavage of the Si-S bond.

3.
Inorg Chem ; 62(27): 10613-10625, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37369076

ABSTRACT

High-valent iron species have been implicated as key intermediates in catalytic oxidation reactions, both in biological and synthetic systems. Many heteroleptic Fe(IV) complexes have now been prepared and characterized, especially using strongly π-donating oxo, imido, or nitrido ligands. On the other hand, homoleptic examples are scarce. Herein, we investigate the redox chemistry of iron complexes of the dianonic tris-skatylmethylphosphonium (TSMP2-) scorpionate ligand. One-electron oxidation of the tetrahedral, bis-ligated [(TSMP)2FeII]2- leads to the octahedral [(TSMP)2FeIII]-. The latter undergoes thermal spin-cross-over both in the solid state and solution, which we characterize using superconducting quantum inference device (SQUID), Evans method, and paramagnetic nuclear magnetic resonance spectroscopy. Furthermore, [(TSMP)2FeIII]- can be reversibly oxidized to the stable high-valent [(TSMP)2FeIV]0 complex. We use a variety of electrochemical, spectroscopic, and computational techniques as well as SQUID magnetometry to establish a triplet (S = 1) ground state with a metal-centered oxidation and little spin delocalization on the ligand. The complex also has a fairly isotropic g-tensor (giso = 1.97) combined with a positive zero-field splitting (ZFS) parameter D (+19.1 cm-1) and very low rhombicity, in agreement with quantum chemical calculations. This thorough spectroscopic characterization contributes to a general understanding of octahedral Fe(IV) complexes.

4.
Angew Chem Int Ed Engl ; 61(43): e202209655, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-35973965

ABSTRACT

Terminal iron nitrides (Fe≡N) have been proposed as intermediates of Fe-mediated nitrogen fixation, and well-defined synthetic iron nitrides have been characterized in high oxidation states, including FeIV , FeV , and FeVI . This study reports the generation and low temperature characterization of a terminally bound iron(III) nitride, P3 B Fe(N) (P3 B =tris(o-diisopropylphosphinophenyl)borane), which is a proposed intermediate of iron-mediated nitrogen fixation by the P3 B Fe-catalyst system. CW- and pulse EPR spectroscopy (HYSCORE and ENDOR), supported by DFT calculations, help to define a 2 A ground state electronic structure of this C3 -symmetric nitride species, placing the unpaired spin in a sigma orbital along the B-Fe-N vector; this electronic structure is distinct for an iron nitride. The unusual d5 -configuration is stabilized by significant delocalization (≈50 %) of the unpaired electron onto the axial boron and nitrogen ligands, with a majority of the spin residing on boron.


Subject(s)
Boranes , Iron , Iron/chemistry , Ligands , Nitrogen Fixation , Boron , Electron Spin Resonance Spectroscopy , Nitrogen/chemistry
5.
Angew Chem Int Ed Engl ; 60(17): 9618-9626, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33476423

ABSTRACT

Compounds of main-group elements such as silicon are attractive candidates for green and inexpensive catalysts. For them to compete with state-of-the-art transition-metal complexes, new reactivity modes must be unlocked and controlled, which can be achieved through strain. Using a tris(2-skatyl)methylphosphonium ([TSMPH3 ]+ ) scaffold, we prepared the strained cationic silane [TSMPSiH]+ . In stark contrast with the generally hydridic Si-H bond character, it is acidic with an experimental pKa DMSO within 4.7-8.1, lower than in phenol, benzoic acid, and the few hydrosilanes with reported pKa values. We show that ring strain significantly contributes to this unusual acidity along with inductive and electrostatic effects. The conjugate base, TSMPSi, activates a THF molecule in the presence of CH-acids to generate a highly fluxional alkoxysilane via trace amounts of [TSMPSiH]+ functioning as a strain-release Lewis acid. This reaction involves a formal oxidation-state change from SiII to SiIV , presenting intriguing similarities with transition-metal-mediated processes.

6.
Angew Chem Int Ed Engl ; 60(51): 26518-26522, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34608737

ABSTRACT

Nickelacyclobutanes are mostly invoked as reactive intermediates in the reaction of nickel carbenes and olefins to yield cyclopropanes. Nevertheless, early work suggested that other decomposition routes such as ß-hydride elimination and even metathesis could be accessible. Herein, we report the isolation and characterization of a stable pentacoordinated nickelacyclobutane incorporated in a pincer complex. The coordination of different coligands to the nickelacyclobutane determines its selective decomposition along cyclopropanation, metathesis or apparent ß-hydride elimination pathways. DFT calculations shed light on the mechanism of these different pathways.

7.
Chemistry ; 26(55): 12560-12569, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32350932

ABSTRACT

Homogeneous electrocatalytic proton reduction is reported using cobalt complex [1](BF4 )2 . This complex comprises two bis(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methane (HBMIM Ph 2 ) ligands that contain an acidic methylene moiety in their backbone. Upon reduction of [1](BF4 )2 by either electrochemical or chemical means, one of its HBMIM Ph 2 ligands undergoes deprotonation under the formation of dihydrogen. Addition of a mild proton source (acetic acid) to deprotonated complex [2](BF4 ) regenerates protonated complex [1](BF4 )2 . In presence of acetic acid in acetonitrile solvent [1](BF4 )2 shows electrocatalytic proton reduction with a kobs of ≈200 s-1 at an overpotential of 590 mV. Mechanistic investigations supported by DFT (BP86) suggest that dihydrogen formation takes place in an intramolecular fashion through the participation of a methylene C-H bond of the HBMIM Ph 2 ligand and a CoII -H bond through formal heterolytic splitting of the latter. These findings are of interest to the development of responsive ligands for molecular (base)metal (electro)catalysis.

8.
Chimia (Aarau) ; 74(6): 495-498, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32560756

ABSTRACT

The oxidative addition of aryl halides is a common entry point in catalytic cycles for cross-coupling and related reactions. In the case of phosphine-supported nickel(0) fragments, the formation of reactive Ni(ii)-aryl products often competes with the production of Ni(i) species. Here, recent advances in the mechanistic understanding of these reactions are highlighted. In particular, the denticity of the supporting ligand has a significant influence on the outcome of the reaction.

9.
Eur J Inorg Chem ; 2019(5): 660-667, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-31007578

ABSTRACT

The hydrosilylation of unsaturated compounds homogeneously catalyzed by cobalt complexes has gained considerable attention in the last years, aiming at substituting precious metal-based catalysts. In this study, the catalytic activity of well-characterized CoII and CoI complexes of the pToldpbp ligand is demonstrated in the hydrosilylation of 1-octene with phenylsilane. The CoI complex is the better precatalyst for the mentioned reaction under mild conditions, at 1 mol-% catalyst, 1 h, room temperature, and without solvent, yielding 84 % of octylphenylsilane. Investigation of the substrate scope shows lower performance of the catalyst in styrene hydrosilylation, but excellent results with allylbenzene (84 %) and acetophenone (> 99 %). This catalytic study contributes to the field of cobalt-catalyzed hydrosilylation reactions and shows the first example of catalysis employing the dpbp ligand in combination with a base metal.

10.
Chemistry ; 24(47): 12236-12240, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29577491

ABSTRACT

A computationally guided synthetic route to a free silanide derived from tris(3-methylindol-2-yl)methane ([(tmim)Si]- ) through nucleophilic substitution on the SiII precursor (Idipp)SiCl2 is reported (Idipp=2,3-dihydro-1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-2-ylidene). This approach circumvents the need for strained tetrahedral silanes as synthetic intermediates. Computational investigations show that the electron-donating properties of [(tmim)Si]- are close to those of PMe3. Experimentally, the [(tmim)Si]- anion is shown to undergo clean complexation to the base metal salts CuCl and FeCl2 , demonstrating the potential utility as a supporting ligand.

11.
Chemistry ; 24(20): 5163-5172, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29077236

ABSTRACT

π-Coordinating ligands are commonly found in intermediate structures in homogeneous catalysis, and are gaining interest as supporting ligands for the development of cooperative catalysts. Herein, we systematically investigate the binding of the ketone group, a strongly accepting π ligand, to mid-to-late metals of the first transition series. To this end, the coordination of 2,2'-bis(diphenylphosphino)benzophenone (Ph dpbp), which features a ketone moiety flanked by two strongly binding P-donor groups, to Fe, Co, Ni, and Cu was explored. The ketone moiety does not bind to the metal in MII complexes, whereas MI complexes (Fe, Co, Ni) adopt an η2 (C,O) coordination. A structural and computational investigation of periodic trends in this series was performed. These data suggest that the coordination of the ketone to MI can mostly be described by the resonance extremes of the Dewar-Chatt-Duncanson model, that is, the π complex and the metallaoxacycle extreme, with a possible minor contribution from a ketyl radical resonance structure in the case of the iron complex.

12.
Inorg Chem ; 57(24): 15406-15413, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30500170

ABSTRACT

Redox-active ligands and Z-type acceptor ligands have emerged as promising strategies for promoting multielectron redox chemistry at transition-metal centers. Herein, we report the synthesis and characterization of copper and silver complexes of a diphosphine ligand featuring a diboraanthracene core (B2P2, 9,10-bis(2-(diisopropylphosphino)phenyl)-9,10-dihydroboranthrene) that is capable of serving as both a redox reservoir and a Z-type ligand. Metalation of B2P2 with CuX (X = Cl, Br, I) results in the formation of bimetallic complexes of the formula (B2P2)Cu2X2 of two different structure types, depending on the halide. The Cu(I) cation [Cu(B2P2)]+ can be accessed by direct metalation of B2P2 with [Cu(CH3CN)4][PF6] or by halide abstraction with Na[BArF4] (ArF = 3,5-bis(trifluoromethyl)phenyl) with concomitant expulsion of CuX from the bimetallic Cu2X2 complexes. Metalation of B2P2 with AgCl results in the formation of the zwitterion Ag(B2P2)Cl featuring a diphosphine Ag cation tethered to a chloroborate anion. Metathesis of chloride for the noncoordinating [BArF4]- affords the cation [Ag(B2P2)]+. The cations [Cu(B2P2)]+ and [Ag(B2P2)]+ exhibit quasireversible reduction events at ∼ -1.6 V versus the ferrocene/ferrocenium redox couple, and the thermally sensitive radicals that result from their reduction, Cu(B2P2) and Ag(B2P2), were characterized by EPR spectroscopy and, in the case of the latter, single-crystal X-ray diffraction. Electronic structure calculations suggest these neutral radicals are best described as zwitterions with reduction centered at the diboraanthracene core.

13.
Inorg Chem ; 57(17): 10846-10856, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30113165

ABSTRACT

Ligands that can adapt their coordination mode to the electronic properties of a metal center are of interest to support catalysis or small molecule activation processes. In this context, the ability of imine moieties to bind in either an η1(N)-fashion via σ-donation of the lone pair or, less commonly, in an η2(C,N)-fashion via π-coordination is potentially attractive for the design of new metal-ligand cooperative systems. Herein, the coordination chemistry of chelating ligands with a diphosphine imine framework (PCNP) to nickel is investigated. The imine moiety binds in an η1(N)-fashion in a Ni(II)Cl2 complex. The uncommon η2(C,N)-interaction is obtained in Ni(0) complexes in the presence of a PPh3 coligand. Increasing the bulk on the phosphine side-arms in the Ni(0) complexes, by substituting phenyl for o-tolyl groups, leads to a distinct binding mode in which only one of the phosphorus atoms is coordinated. In the absence of a coligand, a mixture of two different dimeric Ni(0) complexes is formed. In one of them, the imine adopts an uncommon η1(N)η2(C,N) bridging mode of the ligand to nickel, while the second one may involve reactivity on the ligand by the formation of a new C-C bond by oxidative coupling. The latter is supported by the isolation and structural characterization of a crystalline bis-CO derivative featuring a C-C bond formed by oxidative coupling of two imine moieties.

14.
Eur J Inorg Chem ; 2018(10): 1167-1175, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29937689

ABSTRACT

In this study, the selective 1,2-addition of diethylzinc to the ketone functionality of BMdiPhIK [bis(1-methyl-4,5-diphenylimidazolyl)ketone] is shown. The reaction product is isolated in a dimeric form with a planar Zn2(µ-O)2-motif keeping the two monomers together. This compound can serve as a model for reactive intermediates in the catalytic alkylation of ketones with diorganozinc reagents. Hydrolysis of this binuclear zinc compound leads to isolation of the C-alkylated product in 89 % yield. A reaction pathway is proposed in which BMdiPhIK initially coordinates to diethylzinc as a bidentate bis(nitrogen) ligand. This is followed by the homolytic cleavage of the Zn-Et bond and in-cage recombination of the Et-radical and the Zn-coordinated ligand-centered radical, which is mainly localized on the carbonyl moiety of the ligand.

15.
Chemistry ; 23(45): 10732-10737, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28543845

ABSTRACT

A new ß-diiminate ligand (the bis(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methane anion, BMIMPh2- ) is introduced, in which the ligand framework bears an extended imidazole-based π-system in conjugation with a formal ß-diketiminates (NacNac) backbone. Bis-ligated transition metal complexes (Co, Zn) featuring this anionic ligand undergo a series of four consecutive single-electron oxidations that are all ligand-based. The singly and doubly oxidized complexes can be synthesized on a preparative scale and have been fully characterized by various spectroscopic techniques. This is in sharp contrast to the corresponding NacNac-based complexes in which only singly oxidized complexes were isolated and characterized. Single crystal X-ray structure determination revealed a correlation between the intra-ligand metrical parameters and the oxidation state of BMIMPh2- . These structural changes in the ligand framework make BMIMPh2- as a perceptible non-innocent ligand in contrast to NacNac type ligands.

16.
Angew Chem Int Ed Engl ; 56(35): 10413-10417, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28589611

ABSTRACT

Gold is unique among the transition metals in that it is stable as an isolated anion (auride). Despite this fact, the coordination chemistry of anionic gold is virtually nonexistent, and this unique oxidation state is not readily exploited in conventional solution chemistry owing to its high reactivity. Through the use of a new molecular scaffold based on diboraanthracene (B2 P2 , 1), we have overcome these issues by avoiding the intermediacy of zerovalent gold and stabilizing the highly reduced gold anion through acceptor interactions. We have thus synthesized a molecular boroauride [(B2 P2 )Au]- ([2]- ) and showed its reversible conversion between Au-I and AuI states. Through a combination of spectroscopic and computational studies, we show the neutral state to be a AuI complex with a ligand radical anion. Bonding analyses (NBO and QTAIM) and the isolobal relationship between gold and hydrogen provide support for the description of [2]- as a boroauride complex.

17.
Chemistry ; 22(17): 6087-99, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-26962007

ABSTRACT

A range of silanes was synthesized by the reaction of HSiCl3 with iminopyrrole derivatives in the presence of NEt3 . In certain cases, intramolecular hydrosilylation converts the imine ligand into an amino substituent. This reaction is inhibited by factors such as electron-donating substitution on Si and steric bulk. The monosubstituted ((Dipp) IMP)SiHMeCl ((Dipp) IMP=2-[N-(2,6-diisopropylphenyl)iminomethyl]pyrrolide), is stable towards hydrosilylation, but slow hydrosilylation is observed for ((Dipp) IMP)SiHCl2 . Reaction of two equivalents of (Dipp) IMPH with HSiCl3 results in the hydrosilylation product ((Dipp) AMP)((Dipp) IMP)SiCl ((Dipp) AMP=2-[N-(2,6-diisopropylphenyl)aminomethylene]pyrrolide), but the trisubsitituted ((Dipp) IMP)3 SiH is stable. Monitoring the hydrosilylation reaction of ((Dipp) IMP)SiHCl2 reveals a reactive pathway involving ligand redistribution reactions to form the disubstituted ((Dipp) AMP)((Dipp) IMP)SiCl as an intermediate. The reaction is strongly accelerated in the presence of chloride anions.

18.
Angew Chem Int Ed Engl ; 55(42): 13052-13055, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27632976

ABSTRACT

The Ullmann coupling has been used extensively as a synthetic tool for the formation of C-C bonds on surfaces. Thus far, most syntheses made use of aryl bromides or aryl iodides. We investigated the applicability of an aryl chloride in the bottom-up assembly of graphene nanoribbons. Specifically, the reactions of 10,10'-dichloro-9,9'-bianthryl (DCBA) on Au(111) were studied. Using atomic resolution non-contact AFM, the structure of various coupling products and intermediates were resolved, allowing us to reveal the important role of the geometry of the intermediate aryl radicals in the formation mechanism. For the aryl chloride, cyclodehydrogenation occurs before dehalogenation and polymerization. Due to their geometry, the planar bisanthene radicals display a different coupling behavior compared to the staggered bianthryl radicals formed when aryl bromides are used. This results in oligo- and polybisanthenes with predominantly fluoranthene-type connections.

19.
Inorg Chem ; 54(22): 11031-6, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26517008

ABSTRACT

Mononuclear, coordinatively unsaturated rhenium(V) dioxo species of the type XReO2 (X = Me, substituted cyclopentadienyl) have long been postulated as intermediates in rhenium-catalyzed deoxydehydration, but their characterization was precluded because of aggregation into dimeric or oligomeric structures. Using the bulky 1,2,4-tri-tert-butylcyclopentadienyl (Cp(ttt)) ligand, the rhenium(V) dioxo species (Cp(ttt))ReO2 could now be observed, in equilibrium with the dimeric form [(Cp(ttt))Re(O)µ-O]2, and characterized by NMR, IR, and UV-vis spectroscopies, as well as electrospray ionization mass spectrometry. (Cp(ttt))ReO2 is shown to be the primary product of reduction of the rhenium(VII) complex (Cp(ttt))ReO3 with PPh3 and demonstrated to react with ethylene glycol significantly faster than its dimeric counterpart, supporting its role as an intermediate in rhenium-catalyzed deoxydehydration reactions.

20.
Nat Chem ; 16(3): 417-425, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38052947

ABSTRACT

Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M-H bonds are generated either by oxidative addition of H2 to a metal centre or by deprotonation of a non-classical metal dihydrogen (M-H2) intermediate. Here we provide evidence for an alternative H2-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H2 molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni-H2 complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H2. The usefulness of this cooperative H2-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H2 activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (E)-(Z) isomerization and catalyst degradation by self-hydrogenation.

SELECTION OF CITATIONS
SEARCH DETAIL