Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 115(36): E8450-E8459, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30127015

ABSTRACT

Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Côte d'Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally.


Subject(s)
Evolution, Molecular , Genome-Wide Association Study , Plasmodium vivax/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Selection, Genetic , Animals , Cameroon , Cote d'Ivoire , Female , Gabon , Gorilla gorilla , Humans , Male , Pan troglodytes , Protozoan Proteins/metabolism , Pseudogenes
2.
One Health ; 17: 100650, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38024286

ABSTRACT

Routine usage of antibiotics for animal health is a key driver of antimicrobial resistance (AMR) in food-producing animals. Taxation is a possible approach to incentivise appropriate antibiotic usage in food-producing animals. Taxation can be applied flatly across all antibiotic classes, targeted to single antibiotic classes, or scaled based on resistance in each class, so called "differential" taxation. However, quantifying the potential impact of taxation is challenging, due to the nonlinear and unintuitive response of AMR dynamics to interventions and changes in antibiotic usage caused by alterations in price. We combine epidemiological models with price elasticities of demand for veterinary antibiotics, to compare the potential benefits of taxation schemes with currently implemented bans on antibiotic usage. Taxation strategies had effects comparable to bans on antibiotic usage in food-producing animals to reduce average resistance prevalence and prevent increases in overall infection. Taxation could also maximise the average number of antibiotics with a resistance prevalence of under 25% and potentially generate annual global revenues of ∼1 billion US$ under a 50% taxation to current prices of food-producing animal antibiotics. Differential taxation was also able to maintain a high availability of antibiotics over time compared to single and flat taxation strategies, while also having the lowest rates of intervention failure and highest potential revenue across all taxation strategies. These findings suggest that taxation should be further explored as a tool to combat the ongoing AMR crisis.

3.
One Health ; 17: 100639, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38024252

ABSTRACT

Antibiotic usage in livestock has been suggested as a driver of antimicrobial resistance in human and livestock populations. This has contributed to the implementation of stewardship programs to curtail usage of antibiotics in livestock. However, the consequences of antibiotic curtailment in livestock on human health are poorly understood. There is the potential for increases in the carriage of pathogens such as Salmonella spp. in livestock, and subsequent increases in human foodborne disease. We use a mathematical model fitted to four case studies, ampicillin and tetracycline usage in fattening pig and broiler poultry populations, to explore the impact of curtailing antibiotic usage in livestock on salmonellosis in humans. Increases in the daily incidence of salmonellosis and a decrease in the proportion of resistant salmonellosis were identified following curtailment of antibiotic usage in livestock. The extent of these increases in human foodborne disease ranged from negligible, to controllable through interventions to target the farm-to-fork pathway. This study provides a motivating example of one plausible scenario following curtailment of antibiotic usage in livestock and suggests that a focus on ensuring good farm-to-fork hygiene and livestock biosecurity is sufficient to mitigate the negative human health consequences of antibiotic stewardship in livestock populations.

4.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200282, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34053258

ABSTRACT

Retrospective analyses of the non-pharmaceutical interventions (NPIs) used to combat the ongoing COVID-19 outbreak have highlighted the potential of optimizing interventions. These optimal interventions allow policymakers to manage NPIs to minimize the epidemiological and human health impacts of both COVID-19 and the intervention itself. Here, we use a susceptible-infectious-recovered (SIR) mathematical model to explore the feasibility of optimizing the duration, magnitude and trigger point of five different NPI scenarios to minimize the peak prevalence or the attack rate of a simulated UK COVID-19 outbreak. An optimal parameter space to minimize the peak prevalence or the attack rate was identified for each intervention scenario, with each scenario differing with regard to how reductions to transmission were modelled. However, we show that these optimal interventions are fragile, sensitive to epidemiological uncertainty and prone to implementation error. We highlight the use of robust, but suboptimal interventions as an alternative, with these interventions capable of mitigating the peak prevalence or the attack rate over a broader, more achievable parameter space, but being less efficacious than theoretically optimal interventions. This work provides an illustrative example of the concept of intervention optimization across a range of different NPI strategies. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Disease Outbreaks , Humans , Public Policy , Retrospective Studies , Time Factors , United Kingdom/epidemiology
5.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200275, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34053266

ABSTRACT

This study demonstrates that an adoption of a segmenting and shielding strategy could increase the scope to partially exit COVID-19 lockdown while limiting the risk of an overwhelming second wave of infection. We illustrate this using a mathematical model that segments the vulnerable population and their closest contacts, the 'shielders'. Effects of extending the duration of lockdown and faster or slower transition to post-lockdown conditions and, most importantly, the trade-off between increased protection of the vulnerable segment and fewer restrictions on the general population are explored. Our study shows that the most important determinants of outcome are: (i) post-lockdown transmission rates within the general and between the general and vulnerable segments; (ii) fractions of the population in the vulnerable and shielder segments; (iii) adherence to protective measures; and (iv) build-up of population immunity. Additionally, we found that effective measures in the shielder segment, e.g. intensive routine screening, allow further relaxations in the general population. We find that the outcome of any future policy is strongly influenced by the contact matrix between segments and the relationships between physical distancing measures and transmission rates. This strategy has potential applications for any infectious disease for which there are defined proportions of the population who cannot be treated or who are at risk of severe outcomes. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Pandemics , COVID-19/transmission , COVID-19/virology , Communicable Disease Control/trends , Humans , Models, Theoretical , SARS-CoV-2/pathogenicity , United Kingdom/epidemiology
6.
PLoS Negl Trop Dis ; 12(12): e0006803, 2018 12.
Article in English | MEDLINE | ID: mdl-30521526

ABSTRACT

BACKGROUND: Age patterns in asymptomatic and symptomatic infection with Leishmania donovani, the causative agent of visceral leishmaniasis (VL) in the Indian subcontinent (ISC), are currently poorly understood. Age-stratified serology and infection incidence have been used to assess transmission levels of other diseases, which suggests that they may also be of use for monitoring and targeting control programmes to achieve elimination of VL and should be included in VL transmission dynamic models. We therefore analysed available age-stratified data on both disease incidence and prevalence of immune markers with the aim of collating the currently available data, estimating rates of infection, and informing modelling and future data collection. METHODOLOGY/PRINCIPAL FINDINGS: A systematic literature search yielded 13 infection prevalence and 7 VL incidence studies meeting the inclusion criteria. Statistical tests were performed to identify trends by age, and according to diagnostic cut-off. Simple reversible catalytic models with age-independent and age-dependent infection rates were fitted to the prevalence data to estimate infection and reversion rates, and to test different hypotheses about the origin of variation in these rates. Most of the studies showed an increase in infection prevalence with age: from ≲10% seroprevalence (<20% Leishmanin skin test (LST) positivity) for 0-10-year-olds to >10% seroprevalence (>20% LST-positivity) for 30-40-year-olds, but overall prevalence varied considerably between studies. VL incidence was lower amongst 0-5-year-olds than older age groups in most studies; most showing a peak in incidence between ages 5 and 20. The age-independent catalytic model provided the best overall fit to the infection prevalence data, but the estimated rates for the less parsimonious age-dependent model were much closer to estimates from longitudinal studies, suggesting that infection rates may increase with age. CONCLUSIONS/SIGNIFICANCE: Age patterns in asymptomatic infection prevalence and VL incidence in the ISC vary considerably with geographical location and time period. The increase in infection prevalence with age and peaked age-VL-incidence distribution may be due to lower exposure to infectious sandfly bites in young children, but also suggest that acquired immunity to the parasite increases with age. However, poor standardisation of serological tests makes it difficult to compare data from different studies and draw firm conclusions about drivers of variation in observed age patterns.


Subject(s)
Leishmania donovani/immunology , Leishmaniasis, Visceral/epidemiology , Age Distribution , Asia, Western/epidemiology , Female , Humans , Incidence , Leishmania donovani/isolation & purification , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/transmission , Longitudinal Studies , Male , Models, Statistical , Prevalence , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL