Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Mol Biol Rep ; 48(5): 4961-4965, 2021 May.
Article in English | MEDLINE | ID: mdl-34145534

ABSTRACT

Anecdotal reports from fishers in Southeast Queensland, Australia suggest that shark depredation is a significant issue, however little is known about which species are responsible for depredating catches. This research aimed to identify depredating species in Southeast Queensland line based fisheries, by undertaking a genetic analysis of depredated samples collected by commercial, charter and recreational fishers. The genetic analysis successfully identified ten depredating sharks, all from the genus Carcharhinus (19.2% success). The species identified using mitochondrial DNA included five C. leucas (bull sharks), two C. plumbeus (sandbar sharks), one C. amboinensis (pigeye shark), one C. brevipinna (spinner shark) and one unconfirmed C. plumbeus/C. altimus (bignose shark). While many species of Carcharhinus have been found to depredate catches in Australia, C. leucas has not been highlighted until this research as a potential problematic species. The optimised protocol allowed for the confident identification of shark species responsible for depredation in fisheries using frozen fish samples donated by fishers.


Subject(s)
Sharks , Animals , Conservation of Natural Resources , DNA, Mitochondrial , Fisheries , Predatory Behavior , Queensland , Sharks/classification , Sharks/genetics
2.
Appl Environ Microbiol ; 86(6)2020 03 02.
Article in English | MEDLINE | ID: mdl-31900308

ABSTRACT

The horn fly, Haematobia irritansirritans, is a hematophagous parasite of livestock distributed throughout Europe, Africa, Asia, and the Americas. Welfare losses on livestock due to horn fly infestation are estimated to cost between $1 billion and $2.5 billion (U.S. dollars) annually in North America and Brazil. The endosymbiotic bacterium Wolbachia pipientis is a maternally inherited manipulator of reproductive biology in arthropods and naturally infects laboratory colonies of horn flies from Kerrville, TX, and Alberta, Canada, but it has also been identified in wild-caught samples from Canada, the United States, Mexico, and Hungary. Reassembly of PacBio long-read and Illumina genomic DNA libraries from the Kerrville H. i. irritans genome project allowed for a complete and circularized 1.3-Mb Wolbachia genome (wIrr). Annotation of wIrr yielded 1,249 coding genes, 34 tRNAs, 3 rRNAs, and 5 prophage regions. Comparative genomics and whole-genome Bayesian evolutionary analysis of wIrr compared to published Wolbachia genomes suggested that wIrr is most closely related to and diverged from Wolbachia supergroup A strains known to infect Drosophila spp. Whole-genome synteny analyses between wIrr and closely related genomes indicated that wIrr has undergone significant genome rearrangements while maintaining high nucleotide identity. Comparative analysis of the cytoplasmic incompatibility (CI) genes of wIrr suggested two phylogenetically distinct CI loci and acquisition of another cifB homolog from phylogenetically distant supergroup A Wolbachia strains, suggesting horizontal acquisition of these loci. The wIrr genome provides a resource for future examination of the impact Wolbachia may have in both biocontrol and potential insecticide resistance of horn flies.IMPORTANCE Horn flies, Haematobia irritans irritans, are obligate hematophagous parasites of cattle having significant effects on production and animal welfare. Control of horn flies mainly relies on the use of insecticides, but issues with resistance have increased interest in development of alternative means of control. Wolbachia pipientis is an endosymbiont bacterium known to have a range of effects on host reproduction, such as induction of cytoplasmic incompatibility, feminization, male killing, and also impacts vector transmission. These characteristics of Wolbachia have been exploited in biological control approaches for a range of insect pests. Here we report the assembly and annotation of the circular genome of the Wolbachia strain of the Kerrville, TX, horn fly (wIrr). Annotation of wIrr suggests its unique features, including the horizontal acquisition of additional transcriptionally active cytoplasmic incompatibility loci. This study provides the foundation for future studies of Wolbachia-induced biological effects for control of horn flies.


Subject(s)
Genes, Bacterial , Muscidae/microbiology , Symbiosis , Wolbachia/physiology , Animals , Gene Transfer, Horizontal , Symbiosis/genetics , Wolbachia/genetics
3.
Bull Entomol Res ; 110(6): 709-724, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32456717

ABSTRACT

The genus Megastigmus Dalman, 1820 (Hymenoptera: Megastigmidae) contains potential biocontrol agents of the invasive eucalypt galling chalcid Leptocybe spp. (Hymenoptera: Eulophidae), with several species reported in various parts of the world. Species discrimination is challenging due to intraspecific morphological variation, difficulty in measuring sizes of body parts, and the lack of information regarding the global distribution of parasitic Megastigmus. We used two species commonly associated with Leptocybe in its native range to review taxonomic methods and determine the most reliable morphological characters in species delimitation. We examined size variation of body characters, and conducted species discrimination using multivariate ratio analysis, mitochondrial Cytochrome c oxidase subunit 1 (COI) and nuclear 28S rDNA (28S) sequences. Morphological traits were effective in species delimitation yet revealed high variation in several characters employed in current keys. Knowledge generated on morphology and DNA justified the description of a new species, M. manonae, sp. n., the first record of M. pretorianensis in Australia, and revised diagnostic characters for M. zvimendeli. Based on these diagnostic characters and molecular data, we synonymize three species (M. judikingae, syn. n., from Australia, M. sichuanensis, syn. n., from China and M. icipeensis, syn. n., from Kenya) with M. zvimendeli. Our findings highlight the importance of molecular markers in assisting taxonomic decision-making and the need for coordinated work in identifying Megastigmus associated with Leptocybe spp.


Subject(s)
Hymenoptera/classification , Hymenoptera/genetics , Animals , Australia , DNA Barcoding, Taxonomic , DNA, Ribosomal/genetics , Eucalyptus/parasitology , Hymenoptera/anatomy & histology , Hymenoptera/parasitology , Species Specificity
4.
Folia Parasitol (Praha) ; 632016 Jul 29.
Article in English | MEDLINE | ID: mdl-27507709

ABSTRACT

Infective nymphal stages of the family Sebekidae Sambon, 1922 are reported from four species of fish in Australian waters for the first time. Infected fish were collected from locations in Western Australia, the Northern Territory and north Queensland. The infective nymphs of Alofia merki Giglioli in Sambon, 1922 and Sebekia purdieae Riley, Spratt et Winch, 1990 are reported and described for the first time. The remaining specimens were identified as belonging to the genus Sebekia Sambon, 1922 based on the combination of buccal cadre shape, shape and size of hooks, and overall body size, but could not be attributed to any of the other species of Sebekia already reported due to missing required morphological features. DNA sequences of members of the family Sebekidae are presented for the first time. The lack of knowledge on the pentastome fauna of wild crocodiles, and any potential intermediate hosts, in northern Australia, is also outlined.


Subject(s)
Crustacea/classification , Fishes/parasitology , Alligators and Crocodiles/parasitology , Animals , Australia , Crustacea/anatomy & histology , Crustacea/genetics , Nymph/physiology , Species Specificity
5.
Electrophoresis ; 35(4): 494-502, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24166785

ABSTRACT

Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.


Subject(s)
Chickens/parasitology , Coccidiosis/diagnosis , Eimeria/isolation & purification , Parasitology/methods , Animals , Coccidiosis/parasitology , Coccidiosis/veterinary , Eimeria/genetics , Electrophoresis, Capillary/methods , Feces/parasitology , Oocysts , Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
6.
Forensic Sci Int Genet ; 72: 103087, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38996566

ABSTRACT

Species identification following shark-related incidents is critical for effective incident management and for collecting data to inform shark-bite mitigation strategies. Witness statements are not always reliable, and species identification is often ambiguous or missing. Alternative methods for species identification include morphological assessments of bite marks, analysis of collected teeth at the scene of the incident, and genetic approaches. However, access to appropriate collection media and robust genetic assays have limited the use of genetic technologies. Here, we present a case study that facilitated a unique opportunity to compare the effectiveness of medical gauze readily available in first-aid kits, and forensic-grade swabs in collecting genetic material for shark-species identification. Sterile medical gauze and forensic-grade swabs were used to collect transfer DNA from the bite margins on a bitten surf ski which were compared to a piece of shark tissue embedded along the bite margin. Witness accounts and the characteristics of the bite mark impressions inferred the involvement of a Carcharodon carcharias (white shark). The morphology of a tooth found on the boat that picked up the surf ski, however, suggested it belonged to an Orectolobus spp. (wobbegong). Genetic analysis of DNA transferred from the shark to the surf ski included the application of a broad-target nested PCR assay followed by Sanger sequencing, with white shark contribution to the 'total sample DNA' determined with a species-specific qPCR assay. The results of the genetic analyses were congruent between sampling methods with respect to species identification and the level of activity inferred by the donor-specific DNA contribution. These data also supported the inferences drawn from the bite mark morphology. DNA from the recovered tooth was PCR amplified with a wobbegong-specific primer pair designed for this study to corroborate the tooth's morphological identification. Following the confirmation of gauze used for sampling in the case study event, two additional isolated incidents occurred and were sampled in situ using gauze, as typically found in a first-aid kit, by external personnel. DNA extracted from these gauze samples resulted in the identification of a white shark as the donor of the DNA collected from the bite marks in both instances. This study, involving three incidents separated by time and location, represents the seminal application of gauze as a sampling media after critical human-shark interactions and strongly supports the practical implementation of these methods in the field.

7.
PLoS Pathog ; 5(5): e1000458, 2009 May.
Article in English | MEDLINE | ID: mdl-19478871

ABSTRACT

The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.


Subject(s)
Amphibians/microbiology , Chytridiomycota/genetics , Animals , Base Sequence , DNA, Viral , Disease Outbreaks , Genome, Mitochondrial , Genotype , Loss of Heterozygosity , Mycoses , Polymorphism, Genetic , Rana catesbeiana/microbiology , Recombination, Genetic
8.
Pathogens ; 10(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34578243

ABSTRACT

BACKGROUND: Stephanofilaria spp. nematodes are associated with cutaneous lesions in cattle and other livestock and mammalian wildlife species. In Australia, Haematobia irritans exigua, commonly known as buffalo fly (BF) transmits a well-described but presently unnamed species of Stephanofilaria, which has been speculatively implicated in the aetiology of BF lesions. The sensitivity of current techniques for detecting Stephanofilaria spp. in skin lesions and vector species is low, and there is no genomic sequence for any member of the genus Stephanofilaria currently available in sequence databases. METHODS: To develop molecular assays for the detection of the Australian Stephanofilaria sp., skin biopsies were collected from freshly slaughtered cattle with typical lesions near the medial canthus. Adult nematodes and microfilariae were isolated from the biopsies using a saline recovery technique. The nematodes were morphologically identified as Stephanofilaria sp. by scanning electron microscopy. DNA was extracted and the internal transcribed spacer 2 (ITS2) region of rDNA, and the cytochrome c oxidase subunit 1 (cox1) region of mtDNA was amplified and sequenced. Stephanofilaria sp. specific polymerase chain reaction (PCR) and qPCR assays (SYBR Green® and TaqMan™) were developed and optimised from the novel ITS2 sequence obtained. The specificity of each assay was confirmed by testing against nematode species Onchocerca gibsoni and Dirofilaria immitis, as well as host (bovine) and BF DNA. RESULTS: Scanning electron microscopy of the anterior and posterior ends of isolated nematodes confirmed Stephanofilaria sp. A phylogenetic analysis of the cox1 sequence demonstrated that this species is most closely related to Thelazia callipaeda, a parasitic nematode that is a common cause of thelaziasis (or eyeworm infestation) in humans, dogs, and cats. Both conventional and qPCR assays specifically amplified DNA from Stephanofilaria sp. Conventional PCR, TaqMan™, and SYBR Green® assays were shown to detect 1 ng, 1 pg, and 100 fg of Stephanofilaria DNA, respectively. Both qPCR assays detected DNA from single Stephanofilaria microfilaria. CONCLUSION: Molecular diagnostic assays developed in this study showed high specificity and sensitivity for Stephanofilaria sp. DNA. The availability of an accurate and sensitive PCR assay for Stephanofilaria will assist in determining its role in the pathogenesis of cattle skin lesions, as well as in understanding its epidemiological dynamics. This assay may also have application for use in epidemiological studies with other species of Stephanofilaria, most particularly closely related S. stilesi, but this will require confirmation.

9.
Vet Parasitol ; 288: 109297, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248417

ABSTRACT

Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.


Subject(s)
Ectoparasitic Infestations/veterinary , Livestock , Wolbachia/physiology , Animals , Camelus/parasitology , Cattle/parasitology , Cimicidae/microbiology , Diptera/microbiology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/prevention & control , Goats/parasitology , Horses/parasitology , Mites/microbiology , Phthiraptera/microbiology , Sheep, Domestic/parasitology , Siphonaptera/microbiology , Sus scrofa/parasitology , Ticks/microbiology
10.
Ecol Evol ; 10(20): 11565-11578, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144984

ABSTRACT

Since outbreaks of the invasive blue gum chalcids Leptocybe spp. began, the genus Megastigmus (Hymenoptera: Megastigmidae) has been increasingly studied as containing potential biocontrol agents against these pests. Megastigmus species have been collected and described from Australia, the presumed origin of Leptocybe spp., with M. zvimendeli and M. lawsoni reported as Leptocybe spp. parasitoids established outside of Australia. Parasitic Megastigmus have been reported to occur locally in the Neotropics, Afrotropic, Palearctic, and Indomalaya biogeographic realms, and in many cases described as new to science. However, molecular tools have not been used in studying parasitic Megastigmus, and difficulties in morphological taxonomy have compromised further understanding of eucalypt-associated Megastigmus as well as the Megastigmus-Leptocybe association. In this study, we used molecular markers to study the species composition and phylogeny of Megastigmus collected from eucalypt galls in Australia and from Leptocybe spp. galls from South Africa, Kenya, Israel, China, and Vietnam. We record thirteen discrete species and a species complex associated with eucalypt galls. A summary of morphological characters is provided to assist morphological delimitation of the studied group. A phylogeny based on 28S rDNA identified species groups of importance to Leptocybe spp. biocontrol agents from four clades with nine species. Relationships between Megastigmus from eucalypt galls and their phytophagous congeners were unresolved. Further molecular work is needed to clarify the identity of many species.

11.
Parasit Vectors ; 13(1): 296, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32522243

ABSTRACT

BACKGROUND: Buffalo flies (Haematobia irritans exigua) (BF) and closely related horn flies (Haematobia irritans irritans) (HF) are invasive haematophagous parasites with significant economic and welfare impacts on cattle production. Wolbachia are intracellular bacteria found widely in insects and currently of much interest for use in novel strategies for the area wide control of insect pests and insect-vectored diseases. In this paper, we report the transinfection of BF towards the development of area-wide controls. METHODS: Three stages of BF; embryos, pupae and adult female flies, were injected with different Wolbachia strains (wAlbB, wMel and wMelPop). The success of transinfection and infection dynamics was compared by real-time PCR and FISH and fitness effects were assessed in transinfected flies. RESULTS: BF eggs were not easily injected because of their tough outer chorion and embryos were frequently damaged with less than 1% hatch rate of microinjected eggs. No Wolbachia infection was recorded in flies successfully reared from injected eggs. Adult and pupal injection resulted in higher survival rates and somatic and germinal tissue infections, with transmission to the succeeding generations on some occasions. Investigations of infection dynamics in flies from injected pupae confirmed that Wolbachia were actively multiplying in somatic tissues. Ovarian infections were confirmed with wMel and wMelPop in a number of instances, though not with wAlbB. Measurement of fitness traits indicated reduced longevity, decreased and delayed adult emergence, and reduced fecundity in Wolbachia-infected flies compared to mock-injected flies. Effects varied with the Wolbachia strain injected with most marked changes seen in the wMelPop-injected flies and least severe effects seen with wAlbB. CONCLUSIONS: Adult and pupal injection were the most suitable methods for transinfecting BF and all three strains of Wolbachia successfully replicated in somatic tissues. The Wolbachia-induced fitness effects seen in transinfected BF suggest potential for use of the wMel or wMelPop strains in Wolbachia-based biocontrol programmes for BF.


Subject(s)
Muscidae/microbiology , Pest Control, Biological/methods , Wolbachia/physiology , Animals , Female , Fertility , Host Microbial Interactions , Life Cycle Stages , Longevity , Male , Microinjections , Wolbachia/genetics
12.
J Parasitol ; 104(2): 117-132, 2018 04.
Article in English | MEDLINE | ID: mdl-29231789

ABSTRACT

Adult and cystacanth forms of the acanthocephalan Serrasentis sagittifer from Australian coastal waters are redescribed and verified as the same species using both molecular and morphological data. This study provides the baseline 18S rDNA, 28S rDNA, and cox1 sequence data to serve as genetic barcode for S. sagittifer. The validity of the currently recognized species of Serrasentis is discussed. The most recently described species are junior synonyms of either Serrasentis nadakali or S. sagittifer, and a number of species are species inquirenda. When using morphological characters to distinguish the species of Serrasentis, consideration needs to be given to the maturity of the specimens, since the trunk elongates and the number and distribution of the ventral combs changes as worms mature, although the proboscis armature itself does not change. A simple key to assist in the identification of species of Serrasentis is provided. Adult S. sagittifer appear to be highly host specific to the cobia, Rachycentron canadum, in northern Australian waters, whereas cystacanths have been reported from a wide range of fish species. The relationship between host length and number of cystacanths shows that most paratenic infections are acquired as young fish, most likely via a crustacean intermediate host.


Subject(s)
Acanthocephala/anatomy & histology , Acanthocephala/classification , Fish Diseases/parasitology , Helminthiasis, Animal/parasitology , Acanthocephala/genetics , Acanthocephala/growth & development , Animals , Australia , Base Sequence , Consensus Sequence , DNA, Helminth/chemistry , DNA, Helminth/isolation & purification , DNA, Ribosomal/chemistry , Female , Fishes , Host-Parasite Interactions , Indian Ocean , Likelihood Functions , Male , Pacific Ocean , Phylogeny , Sequence Alignment
13.
Vet Parasitol ; 243: 58-66, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28807311

ABSTRACT

Modern molecular approaches have vastly improved diagnostic capabilities for differentiating among species of chicken infecting Eimeria. Consolidating information from multiple genetic markers, adding additional poultry Eimeria species and increasing the size of available data-sets is improving the resolving power of the DNA, and consequently our understanding of the genus. This study adds information from 25 complete mitochondrial DNA genomes from Australian chicken Eimeria isolates representing all 10 species known to occur in Australia, including OTU-X, -Y and -Z. The resulting phylogeny provides a comprehensive view of species relatedness highlighting where the OTUs align with respect to others members of the genus. All three OTUs fall within the Eimeria clade that contains only chicken-infecting species with close affinities to E. maxima, E. brunetti and E. mitis. Mitochondrial genetic diversity was low among Australian isolates likely reflecting their recent introduction to the country post-European settlement. The lack of observed genetic diversity is a promising outcome as it suggests that the currently used live vaccines should continue to offer widespread protection against Eimeria outbreaks in all states and territories. Flocks were frequently found to host multiple strains of the same species, a factor that should be considered when studying disease epidemiology in the field.


Subject(s)
Chickens/parasitology , Coccidiosis/veterinary , Eimeria/genetics , Genetic Variation , Genome, Mitochondrial/genetics , Poultry Diseases/parasitology , Animals , Australia/epidemiology , Coccidiosis/epidemiology , Coccidiosis/parasitology , Eimeria/classification , Eimeria/isolation & purification , Phylogeny , Poultry Diseases/epidemiology
14.
Ecology ; 87(7): 1671-83, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16922318

ABSTRACT

A newly discovered infectious disease of amphibians, chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis, is implicated in population declines and possible extinctions throughout the world. The purpose of our study was to examine the effects of B. dendrobatidis on the mountain yellow-legged frog (Rana muscosa) in the Sierra Nevada of California (USA). We (1) quantified the prevalence and incidence of B. dendrobatidis through repeat surveys of several hundred R. muscosa populations in the southern Sierra Nevada; (2) described the population-level effects of B. dendrobatidis on R. muscosa population abundance; and (3) compared the mortality rates of infected and uninfected R. muscosa individuals from pre- through post-metamorphosis using both laboratory and field experiments. Mouthpart inspections conducted in 144 and 132 R. muscosa populations in 2003 and 2004, respectively, indicated that 19% of R. muscosa populations in both years showed indications of chytridiomycosis. Sixteen percent of populations that were uninfected in 2003 became infected by 2004. Rana muscosa population sizes were reduced by an average of 88% following B. dendrobatidis outbreaks at six sites, but at seven B. dendrobatidis-negative sites, R. muscosa population sizes increased by an average of 45% over the same time period. In the laboratory, all infected R. muscosa developed fatal chytridiomycosis after metamorphosis, while all uninfected individuals remained healthy. In the field experiment in which R. muscosa tadpoles were caged at infected and uninfected sites, 96% of the individuals that metamorphosed at infected sites died vs. 5% at the uninfected sites. These studies indicate that chytridiomycosis causes high mortality in post-metamorphic R. muscosa, that this emerging disease is the proximate cause of numerous observed R. muscosa population declines, and that the disease threatens this species with extirpation at numerous sites in California's Sierra Nevada.


Subject(s)
Animal Diseases/microbiology , Fungi/isolation & purification , Mycoses/veterinary , Ranidae/microbiology , Animal Diseases/epidemiology , Animals , Incidence , Larva/microbiology , Prevalence , Time Factors
15.
J Parasitol ; 92(1): 77-88, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16629320

ABSTRACT

Revealing diversity among extant blood flukes, and the patterns of relationships among them, has been hindered by the difficulty of determining if specimens described from different life cycle stages, hosts, geographic localities, and times represent the same or different species. Persistent collection of all available life cycle stages and provision of exact collection localities, host identification, reference DNA sequences for the parasite, and voucher specimens eventually will provide the framework needed to piece together individual life cycles and facilitate reconciliation with classical taxonomic descriptions, including those based on single life cycle stages. It also provides a means to document unique or rare species that might only ever be recovered from a single life cycle stage. With an emphasis on the value of new information from field collections of any available life cycle stages, here we provide data for several blood fluke cercariae from freshwater snails from Kenya, Uganda, and Australia. Similar data are provided for adult worms of Macrobilharzia macrobilharzia and miracidia of Bivitellobilharzia nairi. Some schistosome and sanguinicolid cercariae that we recovered have peculiar morphological features, and our phylogenetic analyses (18S and 28S rDNA and mtDNA CO1) suggest that 2 of the new schistosome specimens likely represent previously unknown lineages. Our results also provide new insights into 2 of the 4 remaining schistosome genera yet to be extensively characterized with respect to their position in molecular phylogenies, Macrobilharzia and Bivitellobilharzia. The accessibility of each life cycle stage is likely to vary dramatically from one parasite species to the next, and our examples validate the potential usefulness of information gleaned from even one such stage, whatever it might be.


Subject(s)
Electron Transport Complex IV/genetics , Life Cycle Stages/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Schistosomatidae/classification , Schistosomatidae/genetics , Animals , Biodiversity , Body Size , DNA, Helminth/chemistry , Fresh Water , Genetic Variation , Likelihood Functions , Molecular Sequence Data , Phylogeny , Schistosomatidae/ultrastructure , Snails/parasitology
16.
Article in English | MEDLINE | ID: mdl-24660926

ABSTRACT

Two complete mitochondrial genomes of the black marlin Istiompax indica were assembled from approximately 3.5 and 2.5 million reads produced by Ion Torrent next generation sequencing. The complete genomes were 16,531 bp and 16,532 bp in length consisting of 2 rRNA, 13 protein-coding genes, 22tRNA and 2 coding regions. They demonstrated a similar A + T base (52.6%) to other teleosts. Intraspecific sequence variation was 99.5% for three I. indica mitogenomes and 99.7% for X. gladius. A lower value (85%) was found for the I. platypterus mitogenomes from genbank and accredited to inadvertent inclusion of gene regions from a con-familial species in one record, highlighting the need for cautious downstream use of genbank data.


Subject(s)
Genome, Mitochondrial , Perciformes/genetics , Animals , Base Sequence , DNA, Mitochondrial/genetics , Fresh Water , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA/veterinary
17.
Vet Sci ; 3(3)2016 Sep 13.
Article in English | MEDLINE | ID: mdl-29056732

ABSTRACT

Babesia spp. are tick-transmitted haemoparasites causing tick fever in cattle. In Australia, economic losses to the cattle industry from tick fever are estimated at AUD$26 Million per annum. If animals recover from these infections, they become immune carriers. Here we describe a novel multiplex TaqMan qPCR targeting cytochrome b genes for the identification of Babesia spp. The assay shows high sensitivity, specificity and reproducibility, and allows quantification of parasite DNA from Babesia bovis and B. bigemina compared to standard PCR assays. A previously published cytochrome b SYBR Green qPCR was also tested in this study, showing slightly higher sensitivity than the Taqman qPCRs but requires melting curve analysis post-PCR to confirm specificity. The SYBR Green assays were further evaluated using both diagnostic submissions and vaccinated cattle (at 7, 9, 11 and 14 days post-inoculation) showed that B. bigemina can be detected more frequently than B. bovis. Due to fewer circulating parasites, B. bovis detection in carrier animals requires higher DNA input. Preliminary data for a novel fluorescent PCR genotyping based on the Internal Transcribed Spacer 1 region to detect vaccine and field alleles of B. bovis are described. This assay is capable of detecting vaccine and novel field isolate alleles in a single sample.

18.
Vet Parasitol ; 214(1-2): 16-21, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26467277

ABSTRACT

Coccidiosis is a costly enteric disease of chickens caused by protozoan parasites of the genus Eimeria. Disease diagnosis and management is complicated since there are multiple Eimeria species infecting chickens and mixed species infections are common. Current control measures are only partially effective and this, combined with concerns over vaccine efficacy and increasing drug resistance, demonstrates a need for improved coccidiosis diagnosis and control. Before improvements can be made, it is important to understand the species commonly infecting poultry flocks in both backyard and commercial enterprises. The aim of this project was to conduct a survey and assessment of poultry Eimeria across Australia using genetic markers, and create a collection of isolates for each Eimeria species. A total of 260 samples (faecal or caecal) was obtained, and survey results showed that Eimeria taxa were present in 98% of commercial and 81% of backyard flocks. The distribution of each Eimeria species was widespread across Australia, with representatives of all species being found in every state and territory, and the Eimeria species predominating in commercial flocks differed from those in backyard flocks. Three operational taxonomic units also occurred frequently in commercial flocks highlighting the need to understand the impact of these uncharacterised species on poultry production. As Eimeria infections were also frequent in backyard flocks, there is a potential for backyard flocks to act as reservoirs for disease, especially as the industry moves towards free range production systems. This Eimeria collection will be an important genetic resource which is the crucial first step in the development of more sophisticated diagnostic tools and the development of new live vaccines which ultimately will provide savings to the industry in terms of more efficient coccidiosis management.


Subject(s)
Chickens , Coccidiosis/veterinary , Eimeria/isolation & purification , Poultry Diseases/parasitology , Animals , Australia/epidemiology , Coccidiosis/epidemiology , Coccidiosis/parasitology , Eimeria/classification , Poultry Diseases/epidemiology
19.
Int J Parasitol ; 33(9): 977-85, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12906881

ABSTRACT

Because of their role in causing schistosomiasis, flukes of the genus Schistosoma are the best known of all digeneans. The genus has traditionally been divided into four familiar species groups. Here we report on three poorly known species of Schistosoma, one of which, Schistosoma hippopotami, is known from the hippopotamus, one of which is provisionally identified as Schistosoma edwardiense, another hippo parasite, and a third that has not previously been described. All were collected from freshwater snails obtained from Lake Edward, western Uganda, the type locality for both known hippo schistosomes. The three different kinds of schistosome cercariae differ from one another in size, and all are readily differentiated by their long tail stems from the cercariae of human-infecting species. Furthermore, each was recovered from a different genus of snail host, Biomphalaria sudanica, Bulinus truncatus or Ceratophallus natalensis. Molecular analysis, based on 8350 bases of combined nuclear and mitochondrial DNA, groups these three long tail-stem cercariae into a well supported clade that does not associate with any of the recognised species groups. The placement of this clade, basal to all African species plus several Asian species, suggests that there has been an ancient association between Schistosoma and hippos. This new African Schistosoma clade advocates the need for further modification of the traditional species group-based classification. Two of the four species groups are paraphyletic. It also suggests that Schistosoma has been remarkably plastic with respect to adapting to snail hosts-three distantly related genera of planorbid snails have been exploited by worms within a single clade. Finally, it adds a new layer of complexity to deciphering the origins of Schistosoma, often considered to be African but recently challenged as being Asian. In the late Cenozoic the distribution of hippo species straddled both Africa and Asia and they may have provided a means for the introduction of blood flukes to Africa.


Subject(s)
Artiodactyla/parasitology , Genes, Helminth , Schistosoma/isolation & purification , Snails/parasitology , Animals , Asia , Base Sequence , DNA, Mitochondrial , Molecular Sequence Data , Phylogeny , Schistosoma/genetics , Uganda
20.
J Parasitol ; 89(2): 416-8, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12760671

ABSTRACT

Experimental crosses between Schistosoma mansoni and S. rodhaini have shown that hybrid offspring are viable, yet, until now, no naturally occurring hybrid has been identified. A collection of freshwater snails from Nyamlebi-Ngoma, Ukerewe Island, Lake Victoria, Tanzania, yielded a mixed infection within a single Biomphalaria sudanica of S. mansoni females and S. mansoni-S. rodhaini hybrid males. The hybrids were identified using deoxyribonucleic acid (DNA) sequences. Mitochondrial DNA 16S and 12S sequences of the hybrids match those of S. mansoni, whereas their nuclear ribosomal DNA ITS1 and ITS2 sequences match those of S. rodhaini. The identification of hybrids in Tanzania highlights the possibility that the genetic identity of either parasite species might be modified by introgression.


Subject(s)
Schistosoma mansoni/genetics , Schistosoma/genetics , Animals , Biomphalaria/parasitology , Crosses, Genetic , DNA Primers , DNA, Mitochondrial/chemistry , DNA, Ribosomal Spacer/chemistry , Female , Fresh Water , Hybrid Vigor , Hybridization, Genetic/physiology , Male , Polymerase Chain Reaction , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Alignment , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL