Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Publication year range
1.
Acta Anaesthesiol Scand ; 67(5): 576-587, 2023 05.
Article in English | MEDLINE | ID: mdl-36808616

ABSTRACT

BACKGROUND: Evidence from lung protective ventilation (LPV) in the acute respiratory distress syndrome has commonly been applied to guide periprocedural ventilation in lung transplantation. However, this approach may not adequately consider the distinctive features of respiratory failure and allograft physiology in the lung transplant recipient. This scoping review was conducted to systematically map the research describing ventilation and relevant physiological parameters post-bilateral lung transplantation with the aim to identify any associations with patient outcomes and gaps in the current knowledge base. METHODS: To identify relevant publications, comprehensive literature searches of electronic bibliographic databases were conducted with the guidance of an experienced librarian in MEDLINE, EMBASE, SCOPUS and the Cochrane Library. The search strategies were peer-reviewed using the PRESS (Peer Review of Electronic Search Strategies) checklist. The reference lists of all relevant review articles were surveyed. Publications were included in the review if they described relevant ventilation parameters in the immediate post-operative period, published between 2000 and 2022 and involved human subjects undergoing bilateral lung transplantation. Publications were excluded if they included animal models, only single-lung transplant recipients or only patients managed with extracorporeal membrane oxygenation. RESULTS: A total of 1212 articles were screened, 27 were subject to full-text review and 11 were included in the analysis. The quality of the included studies was assessed to be poor with no prospective multi-centre randomised controlled trials. The frequency of reported retrospective LPV parameters was as follows: tidal volume (82%), tidal volume indexed to both donor and recipient body weight (27%) and plateau pressure (18%). Data suggest that undersized grafts are at risk of unrecognised higher tidal volume ventilation indexed to donor body weight. The most reported patient-centred outcome was graft dysfunction severity in the first 72 h. CONCLUSION: This review has identified a significant knowledge gap that indicates uncertainty regarding the safest ventilation practice in lung transplant recipients. The risk may be greatest in patients with established high-grade primary graft dysfunction and undersized allografts, and these factors may define a sub-group that warrants further investigation.


Subject(s)
Lung Transplantation , Respiration, Artificial , Humans , Retrospective Studies , Lung , Body Weight
2.
Soc Sci Res ; 109: 102809, 2023 01.
Article in English | MEDLINE | ID: mdl-36470638

ABSTRACT

The five decades of results produced by analysts of the General Social Survey (GSS) have enriched our understanding of social change, but some core modeling challenges remain. This article proposes that we more fully engage in the development of targeted models of period-based attitude and opinion change, using counterfactual reasoning, as we continue to model cohort replacement. This shift is also consistent with the recent literature on age, period, and cohort analysis, which argues for attention to age varying period effects. Two outcomes are modeled to provide material for the argument: support for government spending on drug addiction and rehabilitation and the valuation of obedience as a goal for child behavioral development.


Subject(s)
Attitude , Diamond , Child , Humans , Retrospective Studies , Cohort Studies
3.
Sens Actuators B Chem ; 353: 131157, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35177879

ABSTRACT

This work reports an optical fibre probe functionalised with 'cotton-shaped' gold-silica nanostructures for relative humidity (RH) monitoring. The sensor response utilises the localised surface plasmon resonance (LSPR) of self-assembled nanostructures: gold nanospheres (40 nm) surrounded by one layer of poly (allylamine hydrochloride) and hydrophilic silica nanoparticles (10-20 nm) on the end-facet of an optical fibre via a wavelength shift of the reflected light. Sensor optimisation is investigated by varying the density of gold nanoparticles on the end-facet of an optical fibre. It is demonstrated that the plasmonic hybridisation mode appearing when the average gold interparticle distance is small (Median: 7.5 nm) is more sensitive to RH after functionalisation than the singular plasmonic mode. The plasmonic hybridisation mode sensor demonstrates a high linear regression to RH with a sensitivity of 0.63 nm/%RH and excellent reversibility. The response time (T10-90%) and recovery time (T90-10%) are calculated as 1.2 ± 0.4 s and 0.95 ± 0.18 s. The sensor shows no measurable cross-talk to temperature in the tested range between 25 °C to 40 °C and the 95% limit of agreement is 3.1%RH when compared to a commercial reference sensor. Simulation with finite element analysis reveals a polarisation-dependent plasmonic hybridisation with a redshift of plasmonic wavelength as a decrease of the interparticle distance and a higher refractive index sensitivity, which results in a high sensitivity to RH as observed in the experiment.

4.
Sensors (Basel) ; 22(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35270942

ABSTRACT

Compression therapy is widely used as the gold standard for management of chronic venous insufficiency and venous leg ulcers, and the amount of pressure applied during the compression therapy is crucial in supporting healing. A fibre optic pressure sensor using Fibre Bragg Gratings (FBGs) is developed in this paper to measure sub-bandage pressure whilst removing cross-sensitivity due to strain in the fibre and temperature. The interface pressure is measured by an FBG encapsulated in a polymer and housed in a textile to minimise discomfort for the patient. The repeatability of a manual fabrication process is investigated by fabricating and calibrating ten sensors. A customized calibration setup consisting of a programmable translation stage and a weighing scale gives sensitivities in the range 0.4-1.5 pm/mmHg (2.6-11.3 pm/kPa). An alternative calibration method using a rigid plastic cylinder and a blood pressure cuff is also demonstrated. Investigations are performed with the sensor under a compression bandage on a phantom leg to test the response of the sensor to changing pressures in static situations. Measurements are taken on a human subject to demonstrate changes in interface pressure under a compression bandage during motion to mimic a clinical application. These results are compared to the current gold standard medical sensor using a Bland-Altman analysis, with a median bias ranging from -4.6 to -20.4 mmHg, upper limit of agreement (LOA) from -13.5 to 2.7 mmHg and lower LOA from -32.4 to -7.7 mmHg. The sensor has the potential to be used as a training tool for nurses and can be left in situ to monitor bandage pressure during compression therapy.


Subject(s)
Compression Bandages , Varicose Ulcer , Calibration , Humans , Temperature , Varicose Ulcer/therapy , Wound Healing
5.
Opt Laser Technol ; 147: None, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35241861

ABSTRACT

Colorimetric measurement is a versatile, low-cost method for bio-/chemical sensing and that has importance in biomedical applications. General carbon dioxide (CO2) sensors based on colorimetric change of a pH indicator report only one parameter at a time and are cross-sensitive to relative humidity (RH). This work describes a novel optical fiber sensor with a thin film on the distal end of the fiber, combining colorimetric measurement and a white light Fabry-Pérot interferometer (FPI) for the simultaneous measurement of CO2 and RH. The CO2 sensitive dye ion-pair: thymol blue and tetramethylammonium hydroxide are encapsulated inside organically modified silica forming an extrinsic FPI cavity (refractive index of 1.501 ± 0.02 and thickness of 5.83 ± 0.09 µm). The sensor reversibly responds to 0-6% CO2 and 0-90% RH with negligible cross-sensitivity and allows measurement of both parameters simultaneously. A sensitivity of ∼0.19 nm/%RH is obtained for RH measurement based on the wavelength shift of the FPI and there is a polynomial correlation between the average intensity of selected wavelengths and the concentration of CO2. The applicability of the sensor is demonstrated by measuring the CO2 and RH exhaled from human breath with a percent error of 3.1% and 2.2% respectively compared to a commercial datalogger. A simulation model is provided for the dye-encapsulated FPI sensor allowing simulation of spectra of sensors with different film thicknesses.

6.
Sensors (Basel) ; 21(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670602

ABSTRACT

A tip-based fibreoptic localised surface plasmon resonance (LSPR) sensor is reported for the sensing of volatile organic compounds (VOCs). The sensor is developed by coating the tip of a multi-mode optical fibre with gold nanoparticles (size: 40 nm) via a chemisorption process and further functionalisation with the HKUST-1 metal-organic framework (MOF) via a layer-by-layer process. Sensors coated with different cycles of MOFs (40, 80 and 120) corresponding to different crystallisation processes are reported. There is no measurable response to all tested volatile organic compounds (acetone, ethanol and methanol) in the sensor with 40 coating cycles. However, sensors with 80 and 120 coating cycles show a significant redshift of resonance wavelength (up to ~9 nm) to all tested volatile organic compounds as a result of an increase in the local refractive index induced by VOC capture into the HKUST-1 thin film. Sensors gradually saturate as VOC concentration increases (up to 3.41%, 4.30% and 6.18% in acetone, ethanol and methanol measurement, respectively) and show a fully reversible response when the concentration decreases. The sensor with the thickest film exhibits slightly higher sensitivity than the sensor with a thinner film. The sensitivity of the 120-cycle-coated MOF sensor is 13.7 nm/% (R2 = 0.951) with a limit of detection (LoD) of 0.005% in the measurement of acetone, 15.5 nm/% (R2 = 0.996) with an LoD of 0.003% in the measurement of ethanol and 6.7 nm/% (R2 = 0.998) with an LoD of 0.011% in the measurement of methanol. The response and recovery times were calculated as 9.35 and 3.85 min for acetone; 5.35 and 2.12 min for ethanol; and 2.39 and 1.44 min for methanol. The humidity and temperature crosstalk of 120-cycle-coated MOF was measured as 0.5 ± 0.2 nm and 0.5 ± 0.1 nm in the humidity range of 50-75% relative humidity (RH) and temperature range of 20-25 °C, respectively.

7.
Sensors (Basel) ; 21(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34577279

ABSTRACT

Capillary refill time (CRT) refers to the time taken for body tissue to regain its colour after an applied blanching pressure is released. Usually, pressure is manually applied and not measured. Upon release of pressure, simple mental counting is typically used to estimate how long it takes for the skin to regain its colour. However, this method is subjective and can provide inaccurate readings due to human error. CRT is often used to assess shock and hydration but also has the potential to assess peripheral arterial disease which can result in tissue breakdown, foot ulcers and ultimately amputation, especially in people with diabetes. The aim of this study was to design an optical fibre sensor to simultaneously detect blood volume changes and the contact pressure applied to the foot. The CRT probe combines two sensors: a plastic optical fibre (POF) based on photoplethysmography (PPG) to measure blood volume changes and a fibre Bragg grating to measure skin contact pressure. The results from 10 healthy volunteers demonstrate that the blanching pressure on the subject's first metatarsal head of the foot was 100.8 ± 4.8 kPa (mean and standard deviation), the average CRT was 1.37 ± 0.46 s and the time to achieve a stable blood volume was 4.77 ± 1.57 s. For individual volunteers, the fastest CRT measured was 0.82 ± 0.11 and the slowest 1.94 ± 0.49 s. The combined sensor and curve fitting process has the potential to provide increased reliability and accuracy for CRT measurement of the foot in diabetic foot ulcer clinics and in the community.


Subject(s)
Diabetic Foot , Optical Fibers , Foot , Humans , Photoplethysmography , Reproducibility of Results
8.
Analyst ; 145(13): 4504-4511, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32409797

ABSTRACT

Dabrafenib is one of the most widely used of the new generation of targeted anti-cancer drugs. However, its therapeutic window varies for different patients and so there is an unmet need for methods to monitor the dose of drug which the patient receives and at the specific site where it acts. In the case of cancers, it is critical to measure the concentration of drug not just in the bloodstream overall, but in or near tumours, as these will not be the same over multiple time periods. A novel sensor based on an optical fibre long period grating (LPG) modified with a molecular imprinted polymer (MIP) has been developed with the ultimate aim of achieving minimally invasive measurements of Dabrafenib at the tumour site. A molecularly imprinted polymer specific for Dabrafenib was coated on a methacryloylalkoxysilane-functionalised optical fibre long period grating. In vitro experimental results demonstrate that the Dabrafenib sensitivity is 15.2 pm (µg mL-1)-1 (R2 = 0.993) with a limit of detection (LoD) of 74.4 µg mL-1 in serum solution. Moreover, the proposed sensor shows selective response to Dabrafenib over structurally similar 2-Aminoquinoline.


Subject(s)
Antineoplastic Agents/blood , Imidazoles/blood , Molecularly Imprinted Polymers/chemistry , Optical Fibers , Oximes/blood , Animals , Cattle , Limit of Detection , Spectrophotometry/instrumentation , Spectrophotometry/methods
9.
Sensors (Basel) ; 20(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138378

ABSTRACT

The widely applied capillary refill time (CRT) measurement is currently performed by manually applying pressure and using a stopwatch to record the time taken for the skin to recover its normal colour after a blanching pressure is applied. This method is highly subjective and observer-dependent. This paper presents a new, integrated optical sensor probe, combining monitoring of the capillary refilling process with the blanching pressure applied. The sensor consists of an optical fibre-based reflectance photoplethysmography (PPG) sensor to measure the reflected light signal, as well as a fibre Bragg grating (FBG) to measure the applied blanching pressure and to indicate the time when pressure is released. This sensor was applied to calculate the CRT (1.38 ± 0.66 s) of 10 healthy adult volunteers with (55.2 ± 21.8 kPa) blanching pressures. The form of the capillary refilling data was investigated by fitting using an exponential regression model (R2 > 0.96). The integrated probe has the potential to improve the reliability of CRT measurements by standardising the optimum duration and magnitude of the pressure.

10.
Sensors (Basel) ; 20(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212998

ABSTRACT

Textile-based systems are an attractive prospect for wearable technology as they can provide monitoring of key physiological parameters in a comfortable and unobtrusive form. A novel system based on multichannel optical fibre sensor probes integrated into a textile sleeve is described. The system measures the photoplethysmogram (PPG) at two wavelengths (660 and 830 nm), which is then used to calculate oxygen saturation (SpO2). In order to achieve reliable measurement without adjusting the position of the garment, four plastic optical fibre (POF) probes are utilised to increase the likelihood that a high-quality PPG is obtained due to at least one of the probes being positioned over a blood vessel. Each probe transmits and receives light into the skin to measure the PPG and SpO2. All POFs are integrated in a stretchable textile sleeve with a circumference of 15 cm to keep the sensor in contact with the subject's wrist and to minimise motion artefacts. Tests on healthy volunteers show that the multichannel PPG sensor faithfully provides an SpO2 reading in at least one of the four sensor channels in all cases with no need for adjusting the position of the sleeve. This could not be achieved using a single sensor alone. The multichannel sensor is used to monitor the SpO2 of 10 participants with an average wrist circumference of 16.0 ± 0.6 cm. Comparing the developed sensor's SpO2 readings to a reference commercial oximeter (reflectance Masimo Radical-7) illustrates that the mean difference between the two sensors' readings is -0.03%, the upper limit of agreement (LOA) is 0.52% and the lower LOA is -0.58%. This multichannel sensor has the potential to achieve reliable, unobtrusive and comfortable textile-based monitoring of both heart rate and SpO2 during everyday life.


Subject(s)
Optical Fibers , Oximetry/instrumentation , Oxygen/blood , Photoplethysmography , Textiles , Humans , Wearable Electronic Devices
11.
Sensors (Basel) ; 20(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235429

ABSTRACT

An optical fibre sensor for monitoring relative humidity (RH) changes during exercise is demonstrated. The humidity sensor comprises a tip coating of poly (allylamine hydrochloride) (PAH)/silica nanoparticles (SiO2 NPs) deposited using the layer-by-layer technique. An uncoated fibre is employed to compensate for bending losses that are likely to occur during movement. A linear fit to the response of the sensing system to RH demonstrates a sensitivity of 3.02 mV/% (R2 = 0.96), hysteresis ± 1.17% RH when 11 bilayers of PAH/SiO2 NPs are coated on the tip of the fibre. The performance of two different textiles (100% cotton and 100% polyester) were tested in real-time relative humidity measurement for 10 healthy volunteers. The results demonstrate the moisture wicking properties of polyester in that the relative humidity dropped more rapidly after cessation of exercise compared to cotton. The approach has the potential to be used to monitor sports performance and by clothing developers for characterising different garment designs.


Subject(s)
Biosensing Techniques , Nanoparticles/chemistry , Textiles , Wearable Electronic Devices , Humans , Humidity , Optical Fibers , Polyamines/chemistry , Refractometry , Silicon Dioxide/chemistry
12.
Eye Contact Lens ; 45(2): e5-e10, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29944507

ABSTRACT

OBJECTIVES: To report the first case of fungal keratitis caused by Cryptococcus curvatus after penetrating keratoplasty (PK) in an immunocompetent patient and to describe its therapeutic challenge and long-term outcome. METHODS: An interventional case report. RESULTS: A 54-year-old female patient underwent right PK for lattice dystrophy. At 5-year post-PK, she developed a polymicrobial keratitis caused by Candida parapsilosis, and Stenotrophomonas maltophilia at the peripheral graft, which was successfully treated with topical antibiotic and antifungal drops. One year later, another fungal keratitis occurred which apparently resolved with antifungal treatment but recurred in an unusual fashion and required a repeat PK revealing the diagnosis of C. curvatus keratitis. This was confirmed by microbiological culture on Sabouraud dextrose agar, nuclear ribosomal repeat regional sequencing of the D1-D2 and internal transcribed spacer regions, and histopathological examination. Various topical, intracorneal, and systemic antifungal treatments had been attempted but failed to resolve the infection completely, necessitating a subsequent third PK. A further recurrence was noted 16-month post-third PK, which was eradicated with multiple topical and intracorneal antifungal treatment, and direct cryotherapy to the corneal abscess. No further recurrence of C. curvatus was noted at 4-year follow-up. CONCLUSIONS: Cryptococcus curvatus should be added to the known list of organisms capable of causing fungal keratitis. Our experience suggests that this type of organism could cause low-grade, grumbling infection, which may however be exceptionally difficult to treat. Long-term eradication of this rare fungal keratitis could be potentially achieved by intensive ocular and systemic antifungal treatment, repeat therapeutic keratoplasties, and focal cryotherapy.


Subject(s)
Candida parapsilosis/isolation & purification , Cryptococcus/isolation & purification , Eye Infections, Fungal/microbiology , Gram-Negative Bacterial Infections/microbiology , Keratitis/microbiology , Keratoplasty, Penetrating/adverse effects , Stenotrophomonas maltophilia/isolation & purification , Anti-Infective Agents/therapeutic use , Candidiasis/diagnosis , Candidiasis/drug therapy , Candidiasis/microbiology , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/drug therapy , Female , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/drug therapy , Humans , Keratitis/diagnosis , Keratitis/drug therapy , Middle Aged , Surgical Wound Infection/diagnosis , Surgical Wound Infection/drug therapy , Surgical Wound Infection/microbiology
13.
Sensors (Basel) ; 18(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30373119

ABSTRACT

A novel optical sensor probe combining monitoring of blood oxygen saturation (SpO2) with contact pressure is presented. This is beneficial as contact pressure is known to affect SpO2 measurement. The sensor consists of three plastic optical fibres (POF) used to deliver and collect light for pulse oximetry, and a fibre Bragg grating (FBG) sensor to measure contact pressure. All optical fibres are housed in a biocompatible epoxy patch which serves two purposes: (i) to reduce motion artefacts in the photoplethysmogram (PPG), and (ii) to transduce transverse loading into an axial strain in the FBG. Test results show that using a combination of pressure measuring FBG with a reference FBG, reliable results are possible with low hysteresis which are relatively immune to the effects of temperature. The sensor is used to measure the SpO2 of ten volunteers under different contact pressures with perfusion and skewness indices applied to assess the quality of the PPG. The study revealed that the contact force ranging from 5 to 15 kPa provides errors of <2%. The combined probe has the potential to improve the reliability of reflectance oximeters. In particular, in wearable technology, the probe should find use in optimising the fitting of garments incorporating this technology.

14.
Anal Chem ; 89(18): 9703-9711, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28795565

ABSTRACT

The mechanisms that control extracellular serotonin levels in vivo are not well-defined. This shortcoming makes it very challenging to diagnose and treat the many psychiatric disorders in which serotonin is implicated. Fast-scan cyclic voltammetry (FSCV) can measure rapid serotonin release and reuptake events but cannot report critically important ambient serotonin levels. In this Article, we use fast-scan controlled adsorption voltammetry (FSCAV), to measure serotonin's steady-state, extracellular chemistry. We characterize the "Jackson" voltammetric waveform for FSCAV and show highly stable, selective, and sensitive ambient serotonin measurements in vitro. In vivo, we report basal serotonin levels in the CA2 region of the hippocampus as 64.9 ± 2.3 nM (n = 15 mice, weighted average ± standard error). We electrochemically and pharmacologically verify the selectivity of the serotonin signal. Finally, we develop a statistical model that incorporates the uncertainty in in vivo measurements, in addition to electrode variability, to more critically analyze the time course of pharmacological data. Our novel method is a uniquely powerful analysis tool that can provide deeper insights into the mechanisms that control serotonin's extracellular levels.


Subject(s)
Carbon Fiber/chemistry , Electrochemical Techniques , Serotonin/analysis , Animals , Male , Mice , Mice, Inbred C57BL , Microelectrodes
15.
Small ; 13(33)2017 09.
Article in English | MEDLINE | ID: mdl-28692762

ABSTRACT

A new approach for fluorescence imaging in optically turbid media centered on the use of nanoscale ultrasound-switchable FRET-based liposome contrast agents is reported. Liposomes containing lipophilic carbocyanine dyes as FRET pairs with emission wavelengths located in the near-infrared window are prepared. The efficacy of FRET and self-quenching for liposomes with a range of fluorophore concentrations is first calculated from measurement of the liposome emission spectra. Exposure of the liposomes to ultrasound results in changes in the detected fluorescent signal, the nature of which depends on the fluorophores used, detection wavelength, and the fluorophore concentration. Line scanning of a tube containing the contrast agents with 1 mm inner diameter buried at a depth of 1 cm in a heavily scattering tissue phantom demonstrates an improvement in image spatial resolution by a factor of 6.3 as compared with images obtained in the absence of ultrasound. Improvements are also seen in image contrast with the highest obtained being 9% for a liposome system containing FRET pairs. Overall the results obtained provide evidence of the potential the nanoscale ultrasound-switchable FRET-based liposomes studied here have for in vivo fluorescence imaging.


Subject(s)
Fluorescence Resonance Energy Transfer , Infrared Rays , Liposomes/chemistry , Nanoparticles/chemistry , Nephelometry and Turbidimetry , Optical Imaging , Ultrasonics , Fluorescent Dyes/chemistry , Phantoms, Imaging , Spectrometry, Fluorescence
16.
Analyst ; 141(21): 6025-6030, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27517097

ABSTRACT

Metal speciation controls the behavior of aqueous metal ions. Fundamental thermodynamic parameters, such as the formation constant (Kf) of metal-ligand equilibria, provide useful speciation information. Although this information can be determined by spectroscopic techniques with high accuracy, it comes at the expense of time and cost. In this work, we studied Cu2+ complexation with different ligands using an ultra-fast method, fast scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMs). We observed a correlation between the FSCV response and the previously reported Cu2+-ligand equilibrium constants. This relationship allowed us to model a predictive relationship between Kf and 16 model ligands. We hence present an essential proof of principle study that highlights FSCV's capability to prove speciation information in real time.

17.
Analyst ; 141(23): 6432-6437, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27808288

ABSTRACT

Speciation controls the chemical behavior of trace metals. Thus, there is great demand for rapid speciation analysis in a variety of fields. In this study, we describe the application of fast scan cyclic voltammetry (FSCV) and fast scan adsorption controlled voltammetry (FSCAV) to trace metal speciation analysis. We show that Cu2+ can be detected using FSCAV in different matrices. We find that matrices with different Cu2+ binding ability do not affect the equilibrium of Cu2+ adsorption onto CFMs, and thus are an excellent predictor for free Cu2+ ([Cu2+]free) in solution. We modelled a correlation between the FSCV response, [Cu2+]free and log Kf for 15 different Cu2+ complexes. Using our model, we rapidly predicted, and verified [Cu2+]free and Kf of a real groundwater sample spiked with Cu2+. We thus highlight the potential of fast voltammetry as a rapid trace metal speciation sensor.

18.
Anal Chem ; 87(17): 8740-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26226542

ABSTRACT

Detection limits (DL) for blood on four fabric types were estimated for calibrations derived using partial least squares regression applied to infrared (IR) diffuse reflection spectra. Samples were prepared by dip-coating acrylic, cotton, nylon, and polyester fabrics from solutions of diluted rat blood. While DLs often appear in terms of dilution factor in the forensic community, mass percentage, coverage (mass per unit area), or film thickness are often more relevant when comparing experimental methods. These alternate DL units are related to one another and presented here. The best IR diffuse reflection DLs for blood on acrylic and cotton fabrics were in the mid-IR spectral window corresponding to the protein Amide I/II absorption bands. These DLs were dilution by a factor of 2300 (0.019% w/w blood solids) for acrylic and a factor of 610 (0.055% w/w blood solids) for cotton. The best DL for blood on polyester was found in the mid-IR spectral window corresponding to the protein Amide A absorption band at dilution by a factor of 900 (0.034% w/w blood solids). Because of the similarity between the IR spectra of blood solids and nylon fabrics, no satisfactory IR DLs were determined for the calibration of blood on nylon. We compare our values to DLs reported for blood detection using the standard luminol method. The most commonly reported luminol DLs are of the order of 1000-fold dilution, which we estimate are a factor of 2-7 lower than our reported IR DLs on a coverage basis.


Subject(s)
Blood Chemical Analysis/methods , Spectrophotometry, Infrared , Textiles , Acrylates/chemistry , Blood Chemical Analysis/standards , Cotton Fiber , Limit of Detection , Multivariate Analysis , Polyesters/chemistry
19.
Anal Chem ; 87(18): 9265-72, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26275025

ABSTRACT

Audio recordings are a significant component of the world's modern cultural history and are retained for future generations in libraries, archives, and museums. The vast majority of tapes contain polyester-urethane as the magnetic particle binder, the degradation of which threatens the playability and integrity of these often unique recordings. Magnetic tapes with stored historical data are degrading and need to be identified prior to digitization and/or preservation. We demonstrate the successful differentiation of playable and nonplayable quarter-inch audio tapes, allowing the minimally invasive triage of tape collections. Without such a method, recordings are put at risk during playback, which is the current method for identifying degraded tapes. A total of 133 quarter-inch audio tapes were analyzed by attenuated total reflectance Fourier transform-infrared spectroscopy (ATR FT-IR). Classification of IR spectra in regards to tape playability was accomplished using principal component analysis (PCA) followed by quadratic discriminant analysis (QDA) and K-means cluster analysis. The first principal component suggests intensities at the following wavenumbers to be representative of nonplayable tapes: 1730 cm(-1), 1700 cm(-1), 1255 cm(-1), and 1140 cm(-1). QDA and cluster analysis both successfully identified 93.78% of nonplayable tapes in the calibration set and 92.31% of nonplayable tapes in the test set. This application of IR spectra assessed with multivariate statistical analysis offers a path to greatly improve efficiency of audio tape preservation. This rapid, minimally invasive technique shows potential to replace the manual playback test, a potentially destructive technique, ultimately allowing the safe preservation of culturally valuable content.

20.
Opt Lett ; 40(20): 4587-90, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26469570

ABSTRACT

A system has been developed in which multi-exposure laser speckle contrast imaging (LSCI) is implemented using a high frame rate CMOS imaging sensor chip. Processing is performed using a field programmable gate array (FPGA). The system allows different exposure times to be simulated by accumulating a number of short exposures. This has the advantage that the image acquisition time is limited by the maximum exposure time and that regulation of the illuminating light level is not required. This high frame rate camera has also been deployed to implement laser Doppler blood flow processing, enabling a direct comparison of multi-exposure laser speckle imaging and laser Doppler imaging (LDI) to be carried out using the same experimental data. Results from a rotating diffuser indicate that both multi-exposure LSCI and LDI provide a linear response to changes in velocity. This cannot be obtained using single-exposure LSCI, unless an appropriate model is used for correcting the response.


Subject(s)
Lasers , Optical Imaging/instrumentation , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL