Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 719: 150062, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38740002

ABSTRACT

Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells (iPSCs), can differentiate into almost all cell types and are anticipated to have significant applications in the field of regenerative medicine. However, there are no reports of successfully directing iPSCs to become functional olfactory sensory neurons (OSNs) capable of selectively receiving odorant compounds. In this study, we employed dual SMAD inhibition and fibroblast growth factor 8 (FGF-8, reported to dictate olfactory fates) along with N-2 and B-27 supplements in the culture medium to efficiently induce the differentiation of iPSCs into neuronal cells with olfactory function through olfactory placode. Temporal gene expression and expression of OSN-specific markers during differentiation indicated that the expression of olfactory marker proteins and various olfactory receptors (ORs), which are markers of mature OSNs, was observed after approximately one month of differentiation culture, irrespective of the differentiation cues, suggesting differentiation into OSNs. Cells that exhibited specific responses to odorant compounds were identified after administering odorant compounds to differentiated iPSC-derived OSNs. This suggests the spontaneous generation of functional OSNs expressing diverse ORs that respond to odorant compounds from iPSCs.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Odorants , Olfactory Receptor Neurons , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Humans , Olfactory Receptor Neurons/metabolism , Olfactory Receptor Neurons/cytology , Odorants/analysis , Cells, Cultured , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
2.
Sci Technol Adv Mater ; 25(1): 2347193, 2024.
Article in English | MEDLINE | ID: mdl-38835628

ABSTRACT

We synthesized high-heat-resistant adhesives based on metal - organic frameworks owing to their high decomposition temperature and the absence of a glass transition. Heat-resistance tests were performed on adhesive joints consisting of zeolitic imidazolate framework (ZIF)-67-based adhesives and a copper substrate. The as-synthesized ZIF-67-based adhesive exhibited heat resistances at 600 and 700°C in air and nitrogen atmospheres, respectively, comparable to those of conventional high-heat-resistant polymer-based adhesives. The degradation mechanism of the ZIF-67 adhesives was investigated, and their high heat resistance was attributed to the stable existence of the ZIF-67 qtz phase in the adhesive layer at high temperatures without the formation of voids. Thus, adhesives based on ZIF-67 and other metal - organic frameworks can be applied in high-temperature industrial systems.


By focusing on its high thermal stability and absence of glass transition, the ZIF-67 gel was found to have high potential that is comparable to existing heat-resistant adhesives.

SELECTION OF CITATIONS
SEARCH DETAIL