Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Mol Cell ; 66(1): 89-101.e8, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28366643

ABSTRACT

Histone replacement by transition proteins (TPs) and protamines (Prms) constitutes an essential step for the successful production of functional male gametes, yet nothing is known on the underlying functional interplay between histones, TPs, and Prms. Here, by studying spermatogenesis in the absence of a spermatid-specific histone variant, H2A.L.2, we discover a fundamental mechanism involved in the transformation of nucleosomes into nucleoprotamines. H2A.L.2 is synthesized at the same time as TPs and enables their loading onto the nucleosomes. TPs do not displace histones but rather drive the recruitment and processing of Prms, which are themselves responsible for histone eviction. Altogether, the incorporation of H2A.L.2 initiates and orchestrates a series of successive transitional states that ultimately shift to the fully compacted genome of the mature spermatozoa. Hence, the current view of histone-to-nucleoprotamine transition should be revisited and include an additional step with H2A.L.2 assembly prior to the action of TPs and Prms.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Histones/metabolism , Nucleosomes/metabolism , Protamines/metabolism , Spermatogenesis , Spermatozoa/metabolism , Animals , COS Cells , Chlorocebus aethiops , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Computational Biology , Databases, Genetic , Fertility , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Genome , Histones/deficiency , Histones/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Mice, 129 Strain , Mice, Knockout , Nucleosomes/genetics , Phenotype , Spermatogenesis/genetics , Spermatozoa/pathology , Transfection
2.
J Cell Sci ; 134(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34499159

ABSTRACT

TOR complex 1 (TORC1) is a multi-subunit protein kinase complex that controls cellular growth in response to environmental cues. The regulatory subunits of mammalian TORC1 (mTORC1) include RAPTOR (also known as RPTOR), which recruits mTORC1 substrates, such as S6K1 (also known as RPS6KB1) and 4EBP1 (EIF4EBP1), by interacting with their TOR signaling (TOS) motif. Despite the evolutionary conservation of TORC1, no TOS motif has been described in lower eukaryotes. In the present study, we show that the fission yeast S6 kinase Psk1 contains a TOS motif that interacts with Mip1, a RAPTOR ortholog. The TOS motif in Psk1 resembles those in mammals, including the conserved phenylalanine and aspartic acid residues essential for the Mip1 interaction and TORC1-dependent phosphorylation of Psk1. The binding of the TOS motif to Mip1 is dependent on Mip1 Tyr-533, whose equivalent in RAPTOR is known to interact with the TOS motif in their co-crystals. Furthermore, we utilized the mip1-Y533A mutation to screen the known TORC1 substrates in fission yeast and successfully identified Atg13 as a novel TOS-motif-containing substrate. These results strongly suggest that the TOS motif represents an evolutionarily conserved mechanism of the substrate recognition by TORC1.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Animals , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation , Regulatory-Associated Protein of mTOR , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
3.
Biochim Biophys Acta ; 1829(10): 1010-4, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23831842

ABSTRACT

BACKGROUND: Unscheduled expression of critical cellular regulators could be central to malignant genome reprogramming and tumor establishment. One such factor appears to be ATAD2, a remarkably conserved protein normally predominantly expressed in germ cells but almost systematically over-expressed in a variety of unrelated cancers. The presence of a bromodomain adjacent to an AAA type ATPase domain, points to ATAD2 as a factor preliminarily acting on chromatin structure and function. Accordingly, ATAD2 has been shown to cooperate with a series of transcription factors and chromatin modifiers to regulate specific set of genes. SCOPE OF REVIEW: Here we discuss our knowledge on ATAD2 to evaluate its role as a cancer driver and its value as a new anti-cancer target. MAJOR CONCLUSIONS: Upon its activation, ATAD2 through its interaction with defined transcription factors, initiates a loop of transcriptional stimulation of target genes, including ATAD2 itself, leading to enhanced cell proliferation and resistance to apoptosis in an ATAD2-dependent manner. Approaches aiming at neutralizing ATAD2 activity in cancer, including the use of small molecule inhibitors of its two "druggable" domains, AAA ATPase and bromodomain, could become part of a promising anti-cancer strategy.


Subject(s)
Adenosine Triphosphatases/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Genome, Human , Neoplasms/genetics , ATPases Associated with Diverse Cellular Activities , Humans
4.
Nucleic Acids Res ; 40(7): 3031-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22156371

ABSTRACT

PSF is considered to have multiple functions in RNA processing, transcription and DNA repair by mitotic recombination. In the present study, we found that PSF is produced in spermatogonia, spermatocytes and spermatids, suggesting that PSF may also function in meiotic recombination. We tested the effect of PSF on homologous pairing by the meiosis-specific recombinase DMC1, and found that human PSF robustly stimulated it. PSF synergistically enhanced the formation of a synaptic complex containing DMC1, ssDNA and dsDNA during homologous pairing. The PSF-mediated DMC1 stimulation may be promoted by its DNA aggregation activity, which increases the local concentrations of ssDNA and dsDNA for homologous pairing by DMC1. These results suggested that PSF may function as an activator for the meiosis-specific recombinase DMC1 in higher eukaryotes.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Homologous Recombination , RNA-Binding Proteins/metabolism , Animals , DNA, Single-Stranded/metabolism , Humans , Male , Mice , Nuclear Proteins/metabolism , PTB-Associated Splicing Factor , Phosphate-Binding Proteins , RNA-Binding Proteins/biosynthesis , Rad51 Recombinase/metabolism , Spermatozoa/metabolism
5.
FEBS Lett ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010328

ABSTRACT

TOR complex 1 (TORC1) is a multi-protein kinase complex that coordinates cellular growth with environmental cues. Recent studies have identified Pib2 as a critical activator of TORC1 in budding yeast. Here, we show that loss of Pib2 causes severe growth defects in fission yeast cells, particularly when basal TORC1 activity is diminished by hypomorphic mutations in tor2, the gene encoding the catalytic subunit of TORC1. Consistently, TORC1 activity is significantly compromised in the tor2 hypomorphic mutants lacking Pib2. Moreover, as in budding yeast, fission yeast Pib2 localizes to vacuolar membranes via its FYVE domain, with its tail motif indispensable for TORC1 activation. These results strongly suggest that Pib2-mediated positive regulation of TORC1 is evolutionarily conserved between the two yeast species.

6.
iScience ; 27(1): 108777, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38269097

ABSTRACT

Cells cease to proliferate above their growth-permissible temperatures, a ubiquitous phenomenon generally attributed to heat damage to cellular macromolecules. We here report that, in the presence of rapamycin, a potent inhibitor of Target of Rapamycin Complex 1 (TORC1), the fission yeast Schizosaccharomyces pombe can proliferate at high temperatures that usually arrest its growth. Consistently, mutations to the TORC1 subunit RAPTOR/Mip1 and the TORC1 substrate Sck1 significantly improve cellular heat resistance, suggesting that TORC1 restricts fission yeast growth at high temperatures. Aiming for a more comprehensive understanding of the negative regulation of high-temperature growth, we conducted genome-wide screens, which identified additional factors that suppress cell proliferation at high temperatures. Among them is Mks1, which is phosphorylated in a TORC1-dependent manner, forms a complex with the 14-3-3 protein Rad24, and suppresses the high-temperature growth independently of Sck1. Our study has uncovered unexpected mechanisms of growth restraint even below the temperatures deleterious to cell physiology.

7.
Mol Cell Biol ; 43(12): 675-692, 2023.
Article in English | MEDLINE | ID: mdl-38051102

ABSTRACT

Target of rapamycin complex 1 (TORC1) is activated in response to nutrient availability and growth factors, promoting cellular anabolism and proliferation. To explore the mechanism of TORC1-mediated proliferation control, we performed a genetic screen in fission yeast and identified Sfp1, a zinc-finger transcription factor, as a multicopy suppressor of temperature-sensitive TORC1 mutants. Our observations suggest that TORC1 phosphorylates Sfp1 and protects Sfp1 from proteasomal degradation. Transcription analysis revealed that Sfp1 positively regulates genes involved in ribosome production together with two additional transcription factors, Ifh1/Crf1 and Fhl1. Ifh1 physically interacts with Fhl1, and the nuclear localization of Ifh1 is regulated in response to nutrient levels in a manner dependent on TORC1 and Sfp1. Taken together, our data suggest that the transcriptional regulation of the genes involved in ribosome biosynthesis by Sfp1, Ifh1, and Fhl1 is one of the key pathways through which nutrient-activated TORC1 promotes cell proliferation.


Subject(s)
Saccharomyces cerevisiae Proteins , Schizosaccharomyces , Transcription Factors/genetics , Transcription Factors/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ribosomes/metabolism , Cell Proliferation , Gene Expression Regulation, Fungal
8.
Nucleic Acids Res ; 38(15): 5059-74, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20403813

ABSTRACT

RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51-DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.


Subject(s)
DNA Breaks, Double-Stranded , Rad51 Recombinase/metabolism , Recombination, Genetic , SMN Complex Proteins/metabolism , Animals , Cell Line , Cell Proliferation , Chickens , DNA/metabolism , DNA Repair , Humans
9.
Genes Cells ; 15(4): 373-83, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20236180

ABSTRACT

SPF45 is considered to be a bifunctional protein that functions in splicing and DNA repair. A previous genetic study reported that Drosophila SPF45 participates in the DNA-repair pathway with a RAD51-family protein, RAD201, suggesting that SPF45 may function in DNA repair by the homologous-recombination pathway. To study the function of SPF45 in homologous recombination, we purified human SPF45 and found that it preferentially binds to the Holliday junction, which is a key DNA intermediate in the homologous-recombination pathway. Deletion analyses revealed that the RNA recognition motif, which is located in the C-terminal region of human SPF45, is not involved in DNA binding. On the other hand, alanine-scanning mutagenesis identified the N-terminal lysine residues, which may be involved in Holliday junction binding by human SPF45. We also found that human SPF45 significantly binds to a RAD51 paralog, RAD51B, although it also binds to RAD51 and DMC1 with lower affinity. These biochemical results support the idea that human SPF45 functions in DNA repair by homologous recombination.


Subject(s)
DNA, Cruciform/chemistry , DNA, Cruciform/metabolism , DNA/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Cell Cycle Proteins , DNA/chemistry , DNA/genetics , DNA Repair , DNA-Binding Proteins , Gene Targeting , Humans , Mutagenesis , RNA Splicing , Recombination, Genetic
10.
Nucleic Acids Res ; 37(13): 4296-307, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19447914

ABSTRACT

RAD51, a eukaryotic recombinase, catalyzes homologous-pairing and strand-exchange reactions, which are essential steps in homologous recombination and recombinational repair of double strand breaks. On the other hand, human PSF was originally identified as a component of spliceosomes, and its multiple functions in RNA processing, transcription and DNA recombination were subsequently revealed. In the present study, we found that PSF directly interacted with RAD51. PSF significantly enhanced RAD51-mediated homologous pairing and strand exchange at low RAD51 concentrations; however, in contrast, it inhibited these RAD51-mediated recombination reactions at the optimal RAD51 concentration. Deletion analyses revealed that the N-terminal region of PSF possessed the RAD51- and DNA-binding activities, but the central region containing the RNA-recognition motifs bound neither RAD51 nor DNA. These results suggest that PSF may have dual functions in homologous recombination and RNA processing through its N-terminal and central regions, respectively.


Subject(s)
RNA-Binding Proteins/metabolism , Rad51 Recombinase/metabolism , Recombination, Genetic , Base Pairing , Binding Sites , Binding, Competitive , DNA/chemistry , DNA/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Humans , PTB-Associated Splicing Factor , Protein Structure, Tertiary , RNA/metabolism , RNA-Binding Proteins/chemistry
11.
Genes (Basel) ; 12(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33445779

ABSTRACT

Target of rapamycin complex 1 (TORC1), a serine/threonine-protein kinase complex highly conserved among eukaryotes, coordinates cellular growth and metabolism with environmental cues, including nutrients and growth factors. Aberrant TORC1 signaling is associated with cancers and various human diseases, and TORC1 also plays a key role in ageing and lifespan, urging current active research on the mechanisms of TORC1 regulation in a variety of model organisms. Identification and characterization of the RAG small GTPases as well as their regulators, many of which are highly conserved from yeast to humans, led to a series of breakthroughs in understanding the molecular bases of TORC1 regulation. Recruitment of mammalian TORC1 (mTORC1) by RAGs to lysosomal membranes is a key step for mTORC1 activation. Interestingly, the RAG GTPases in fission yeast are primarily responsible for attenuation of TORC1 activity on vacuoles, the yeast equivalent of lysosomes. In this review, we summarize our current knowledge about the functions of TORC1 regulators on yeast vacuoles, and illustrate the conserved and divergent mechanisms of TORC1 regulation between yeasts and mammals.


Subject(s)
Intracellular Membranes/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Vacuoles/metabolism , Animals , Humans , Lysosomes/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Vacuoles/genetics
12.
Elife ; 102021 02 03.
Article in English | MEDLINE | ID: mdl-33534698

ABSTRACT

Mammalian target of rapamycin complex 1 (TORC1) is controlled by the GATOR complex composed of the GATOR1 subcomplex and its inhibitor, the GATOR2 subcomplex, sensitive to amino acid starvation. Previously, we identified fission yeast GATOR1 that prevents deregulated activation of TORC1 (Chia et al., 2017). Here, we report identification and characterization of GATOR2 in fission yeast. Unexpectedly, the GATOR2 subunit Sea3, an ortholog of mammalian WDR59, is physically and functionally proximal to GATOR1, rather than GATOR2, attenuating TORC1 activity. The fission yeast GATOR complex is dispensable for TORC1 regulation in response to amino acid starvation, which instead activates the Gcn2 pathway to inhibit TORC1 and induce autophagy. On the other hand, nitrogen starvation suppresses TORC1 through the combined actions of the GATOR1-Sea3 complex, the Gcn2 pathway, and the TSC complex, another conserved TORC1 inhibitor. Thus, multiple, parallel signaling pathways implement negative regulation of TORC1 to ensure proper cellular starvation responses.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
13.
Life Sci Alliance ; 4(12)2021 12.
Article in English | MEDLINE | ID: mdl-34580178

ABSTRACT

Taking advantage of the evolutionary conserved nature of ATAD2, we report here a series of parallel functional studies in human, mouse, and Schizosaccharomyces pombe to investigate ATAD2's conserved functions. In S. pombe, the deletion of ATAD2 ortholog, abo1, leads to a dramatic decrease in cell growth, with the appearance of suppressor clones recovering normal growth. The identification of the corresponding suppressor mutations revealed a strong genetic interaction between Abo1 and the histone chaperone HIRA. In human cancer cell lines and in mouse embryonic stem cells, we observed that the KO of ATAD2 leads to an accumulation of HIRA. A ChIP-seq mapping of nucleosome-bound HIRA and FACT in Atad2 KO mouse ES cells demonstrated that both chaperones are trapped on nucleosomes at the transcription start sites of active genes, resulting in the abnormal presence of a chaperone-bound nucleosome on the TSS-associated nucleosome-free regions. Overall, these data highlight an important layer of regulation of chromatin dynamics ensuring the turnover of histone-bound chaperones.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Histone Chaperones/metabolism , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Gene Deletion , Gene Knockout Techniques , Genotype , HeLa Cells , Hep G2 Cells , Humans , Mice , Microorganisms, Genetically-Modified , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Transfection
14.
Methods Mol Biol ; 1832: 293-307, 2018.
Article in English | MEDLINE | ID: mdl-30073534

ABSTRACT

Dramatic and unique genome reorganizations accompany the differentiation of haploid male germ cells, characterized by a gradual loss of the vast majority of histones leading to a final tight compaction of the genome by protamines. Despite being essential for procreation and the life cycle, the mechanisms driving the transformation of nucleosomes into nucleoprotamines remain poorly understood. To address this issue, our laboratory has developed a number of specific approaches, ranging from the purification of spermatogenic cells at specific stages, the analysis of chromatin transitional states, the functional characterization of histone variants, histone-replacing proteins and their chaperones. This chapter will detail all related relevant techniques with a particular emphasis on methods allowing the functional studies of histone variants and the genome organizational states associated with the studied histones in spermatogenic cells undergoing histone-to-protamine exchange.


Subject(s)
Genome , Germ Cells/cytology , Germ Cells/metabolism , Meiosis , Animals , Histones/metabolism , Male , Meiosis/genetics , Mice , Micrococcal Nuclease/metabolism , Nuclear Proteins/isolation & purification , Nucleosomes/metabolism , Proteomics , Solubility , Spermatids/cytology , Spermatids/metabolism
15.
J Mol Cell Biol ; 8(4): 349-62, 2016 08.
Article in English | MEDLINE | ID: mdl-26459632

ABSTRACT

Although the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells Atad2 becomes critical in sustaining specific gene expression programmes, controlling proliferation and differentiation. Altogether, this work defines Atad2 as a facilitator of general chromatin-templated activities such as transcription.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/metabolism , ATPases Associated with Diverse Cellular Activities , Acetylation , Cell Differentiation , Cell Proliferation , Chromatin Immunoprecipitation , Embryonic Stem Cells/cytology , Genome , Germ Cells/metabolism , Humans , Male , Nucleosomes/metabolism , Protein Binding , Proteomics
16.
Mol Cells ; 37(12): 851-6, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25377252

ABSTRACT

ATAD2, a remarkably conserved, yet poorly characterized factor is found upregulated and associated with poor prognosis in a variety of independent cancers in human. Studies conducted on the yeast Saccharomyces cerevisiae ATAD2 homologue, Yta7, are now indicating that the members of this family may primarily be regulators of chromatin dynamics and that their action on gene expression could only be one facet of their general activity. In this review, we present an overview of the literature on Yta7 and discuss the possibility of translating these findings into other organisms to further define the involvement of ATAD2 and other members of its family in regulating chromatin structure and function both in normal and pathological situations.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , ATPases Associated with Diverse Cellular Activities , Gene Expression Regulation , Genome, Fungal , Genome, Human , Histone Chaperones/metabolism , Humans , Phylogeny , Saccharomyces cerevisiae/genetics , Transcriptional Activation
17.
PLoS One ; 8(10): e75451, 2013.
Article in English | MEDLINE | ID: mdl-24124491

ABSTRACT

In higher eukaryotes, RAD51 functions as an essential protein in homologous recombination and recombinational repair of DNA double strand breaks. During these processes, RAD51 catalyzes homologous pairing between single-stranded DNA and double-stranded DNA. Japonica cultivars of rice (Oryza sativa) encode two RAD51 proteins, RAD51A1 and RAD51A2, whereas only one RAD51 exists in yeast and mammals. However, the functional differences between RAD51A1 and RAD51A2 have not been elucidated, because their biochemical properties have not been characterized. In the present study, we purified RAD51A1 and RAD51A2, and found that RAD51A2 robustly promotes homologous pairing in vitro. RAD51A1 also possesses homologous-pairing activity, but it is only about 10% of the RAD51A2 activity. Both RAD51A1 and RAD51A2 bind to ssDNA and dsDNA, and their DNA binding strictly requires ATP, which modulates the polymer formation activities of RAD51A1 and RAD51A2. These findings suggest that although both RAD51A1 and RAD51A2 have the potential to catalyze homologous pairing, RAD51A2 may be the major recombinase in rice.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , Rad51 Recombinase/metabolism , DNA Breaks, Double-Stranded , Oryza/genetics , Plant Proteins/genetics , Rad51 Recombinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL