Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Publication year range
1.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474906

ABSTRACT

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Subject(s)
Medulloblastoma/blood supply , Medulloblastoma/pathology , Meningeal Neoplasms/blood supply , Meningeal Neoplasms/secondary , Allografts , Animals , Cell Line, Tumor , Chemokine CCL2/metabolism , Chromosomes, Human, Pair 10/genetics , Female , Humans , Male , Medulloblastoma/genetics , Mice, SCID , Neoplastic Cells, Circulating , Parabiosis
3.
Nature ; 572(7767): 67-73, 2019 08.
Article in English | MEDLINE | ID: mdl-31043743

ABSTRACT

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Evolution, Molecular , Fetus/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Animals , Cerebellar Neoplasms/classification , Cerebellum/cytology , Cerebellum/embryology , Cerebellum/metabolism , Child , Female , Fetus/cytology , Glioma/classification , Glioma/genetics , Glioma/pathology , Humans , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Time Factors , Transcriptome/genetics
4.
Nature ; 547(7663): 311-317, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726821

ABSTRACT

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Whole Genome Sequencing , Carcinogenesis/genetics , Carrier Proteins/genetics , Cohort Studies , DNA Methylation , Datasets as Topic , Epistasis, Genetic , Genomics , Humans , Molecular Targeted Therapy , Muscle Proteins/genetics , Mutation , Oncogenes/genetics , Transcription Factors/genetics , Wnt Proteins/genetics
5.
Mol Biol Evol ; 38(6): 2660-2672, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33547786

ABSTRACT

DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or "haplotypes." However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.


Subject(s)
Genetic Techniques , Genetics, Microbial/methods , Haplotypes , Software , Algorithms , Biological Evolution , HIV/genetics , Humans , Plasmodium vivax/genetics
6.
Nature ; 529(7586): 351-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760213

ABSTRACT

The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.


Subject(s)
Cerebellar Neoplasms/therapy , Clone Cells/drug effects , Clone Cells/metabolism , Medulloblastoma/therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Selection, Genetic/drug effects , Animals , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/surgery , Clone Cells/pathology , Craniospinal Irradiation , DNA Mutational Analysis , Disease Models, Animal , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Female , Genome, Human/genetics , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/radiotherapy , Medulloblastoma/surgery , Mice , Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/therapy , Radiotherapy, Image-Guided , Signal Transduction , Xenograft Model Antitumor Assays
7.
Lancet Oncol ; 19(6): 785-798, 2018 06.
Article in English | MEDLINE | ID: mdl-29753700

ABSTRACT

BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.


Subject(s)
Biomarkers, Tumor/genetics , Cerebellar Neoplasms/genetics , DNA Methylation , Genetic Testing/methods , Germ-Line Mutation , Medulloblastoma/genetics , Models, Genetic , Adolescent , Adult , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/therapy , Child , Child, Preschool , DNA Mutational Analysis , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Heredity , Humans , Infant , Male , Medulloblastoma/mortality , Medulloblastoma/pathology , Medulloblastoma/therapy , Pedigree , Phenotype , Predictive Value of Tests , Progression-Free Survival , Prospective Studies , Reproducibility of Results , Retrospective Studies , Risk Factors , Transcriptome , Exome Sequencing , Young Adult
8.
Nature ; 488(7409): 49-56, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22832581

ABSTRACT

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-ß signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.


Subject(s)
Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Genome, Human/genetics , Genomic Structural Variation/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Carrier Proteins/genetics , Cerebellar Neoplasms/metabolism , Child , DNA Copy Number Variations/genetics , Gene Duplication/genetics , Genes, myc/genetics , Genomics , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/genetics , Proteins/genetics , RNA, Long Noncoding , Signal Transduction , Transforming Growth Factor beta/metabolism , Translocation, Genetic/genetics
9.
Genome Res ; 21(8): 1203-12, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21719572

ABSTRACT

To analyze the relationship between antisense transcription and alternative splicing, we developed a computational approach for the detection of antisense-correlated exon splicing events using Affymetrix exon array data. Our analysis of expression data from 176 lymphoblastoid cell lines revealed that the majority of expressed sense-antisense genes exhibited alternative splicing events that were correlated to the expression of the antisense gene. Most of these events occurred in areas of sense-antisense (SAS) gene overlap, which were significantly enriched in both exons and nucleosome occupancy levels relative to nonoverlapping regions of the same genes. Nucleosome occupancy was highly correlated with Pol II abundance across overlapping regions and with concomitant increases in local alternative exon usage. These results are consistent with an antisense transcription-mediated mechanism of splicing regulation in normal human cells. A comparison of the prevalence of antisense-correlated splicing events between individuals of Mormon versus African descent revealed population-specific events that may indicate the continued evolution of new SAS loci. Furthermore, the presence of antisense transcription was correlated to alternative splicing across multiple metazoan species, suggesting that it may be a conserved mechanism contributing to splicing regulation.


Subject(s)
Alternative Splicing , Genome, Human , Transcription, Genetic , Cell Line, Tumor , DNA, Antisense/genetics , Exons , Humans
10.
Nucleic Acids Res ; 40(4): 1523-35, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22053079

ABSTRACT

The gene Mest (also known as Peg1) is regulated by genomic imprinting in the mouse and only the paternal allele is active for transcription. MEST is similarly imprinted in humans, where it is a candidate for the growth retardation Silver-Russell syndrome. The MEST protein belongs to an ancient family of hydrolases but its function is still unknown. It is highly conserved in vertebrates although imprinted expression is only observed in marsupials and eutherians, thus a recent evolutionary event. Here we describe the identification of new imprinted RNA products at the Mest locus, longer variants of the RNA, called MestXL, transcribed >10 kb into the downstream antisense gene Copg2. During development MestXL is produced exclusively in the developing central nervous system (CNS) by alternative polyadenylation. Copg2 is biallelically expressed in the embryo except in MestXL-expressing tissues, where we observed preferential expression from the maternal allele. To analyze the function of the MestXL transcripts in Copg2 regulation, we studied the effects of a targeted allele at Mest introducing a truncation in the mRNA. We show that both the formation of the MestXL isoforms and the allelic bias at Copg2 are lost in the CNS of mutants embryos. Our results propose a new mechanism to regulate allelic usage in the mammalian genome, via tissue-specific alternative polyadenylation and transcriptional interference in sense-antisense pairs at imprinted loci.


Subject(s)
Alleles , Genomic Imprinting , Polyadenylation , Proteins/genetics , RNA/genetics , Animals , Coatomer Protein , Mice , Mutation , Nervous System/embryology , Nervous System/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteins/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL