Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38513662

ABSTRACT

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Subject(s)
Adenosine Triphosphatases , P-type ATPases , Animals , Mice , Humans , Adenosine Triphosphatases/metabolism , Membrane Transport Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Biological Transport , P-type ATPases/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases
2.
Hum Mol Genet ; 28(15): 2486-2500, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31009944

ABSTRACT

Mutations in LMNA encoding lamin A/C and EMD encoding emerin cause cardiomyopathy and muscular dystrophy. Lmna null mice develop these disorders and have a lifespan of 7-8 weeks. Emd null mice show no overt pathology and have normal skeletal muscle but with regeneration defects. We generated mice with germline deletions of both Lmna and Emd to determine the effects of combined loss of the encoded proteins. Mice without lamin A/C and emerin are born at the expected Mendelian ratio, are grossly normal at birth but have shorter lifespans than those lacking only lamin A/C. However, there are no major differences between these mice with regards to left ventricular function, heart ultrastructure or electrocardiographic parameters except for slower heart rates in the mice lacking both lamin A/C and emerin. Skeletal muscle is similarly affected in both of these mice. Lmna+/- mice also lacking emerin live to at least 1 year and have no significant differences in growth, heart or skeletal muscle compared to Lmna+/- mice. Deletion of the mouse gene encoding lamina-associated protein 1 leads to prenatal death; however, mice with heterozygous deletion of this gene lacking both lamin A/C and emerin are born at the expected Mendelian ratio but had a shorter lifespan than those only lacking lamin A/C and emerin. These results show that mice with combined deficiencies of three interacting nuclear envelope proteins have normal embryonic development and that early postnatal defects are primarily driven by loss of lamin A/C or lamina-associated polypeptide 1 rather than emerin.


Subject(s)
Carrier Proteins/genetics , Heart/physiopathology , Lamin Type A/genetics , Membrane Proteins/genetics , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation , Nuclear Proteins/genetics , Animals , Animals, Newborn , Disease Models, Animal , Female , Haploinsufficiency , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscular Dystrophy, Emery-Dreifuss/physiopathology , Myocardium/metabolism , Myocardium/pathology
3.
Am J Physiol Heart Circ Physiol ; 318(4): H778-H786, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32142354

ABSTRACT

Sepsis-induced cardiomyopathy (SIC) is associated with increased patient mortality. At present, there are no specific therapies for SIC. Previous studies have reported increased reactive oxygen species (ROS) and mitochondrial dysfunction during SIC. However, a unifying mechanism remains to be defined. We hypothesized that PKCδ is required for abnormal calcium handling and cardiac mitochondrial dysfunction during sepsis and that genetic deletion of PKCδ would be protective. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) surgery decreased the ejection fraction of wild-type (WT) mice but not PKCδ knockout (KO) mice. Similarly, WT cardiomyocytes exposed to lipopolysaccharide (LPS) demonstrated decreases in contractility and calcium transient amplitude that were not observed in PKCδ KO cardiomyocytes. LPS treatment decreased sarcoplasmic reticulum calcium stores in WT cardiomyocytes, which correlated with increased ryanodine receptor-2 oxidation in WT hearts but not PKCδ KO hearts after sepsis. LPS exposure increased mitochondrial ROS and decreased mitochondrial inner membrane potential in WT cardiomyocytes. This corresponded to morphologic changes consistent with mitochondrial dysfunction such as decreased overall size and cristae disorganization. Increased cellular ROS and changes in mitochondrial morphology were not observed in PKCδ KO cardiomyocytes. These data show that PKCδ is required in the pathophysiology of SIC by generating ROS and promoting mitochondrial dysfunction. Thus, PKCδ is a potential target for cardiac protection during sepsis.NEW & NOTEWORTHY Sepsis is often complicated by cardiac dysfunction, which is associated with a high mortality rate. Our work shows that the protein PKCδ is required for decreased cardiac contractility during sepsis. Mice with deletion of PKCδ are protected from cardiac dysfunction after sepsis. PKCδ causes mitochondrial dysfunction in cardiac myocytes, and reducing mitochondrial oxidative stress improves contractility in wild-type cardiomyocytes. Thus, PKCδ is a potential target for cardiac protection during sepsis.


Subject(s)
Cardiomyopathies/genetics , Mitochondria, Heart/metabolism , Protein Kinase C-delta/genetics , Sepsis/complications , Animals , Calcium Signaling , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cells, Cultured , Female , Gene Deletion , Lipopolysaccharides/toxicity , Male , Membrane Potential, Mitochondrial , Mice , Myocardial Contraction , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Oxidative Stress , Protein Kinase C-delta/metabolism
4.
Biochem Biophys Res Commun ; 527(4): 979-984, 2020 07 05.
Article in English | MEDLINE | ID: mdl-32439159

ABSTRACT

Hepatic γ-secretase regulates low-density lipoprotein receptor (LDLR) cleavage and degradation, affecting clearance of plasma triglyceride (TG)-rich lipoproteins (TRLs). In this study, we investigated whether γ-secretase inhibition modulates risk of Western (high-fat/sucrose and high-cholesterol)-type diet (WTD)-induced hepatic steatosis, dyslipidemia and atherosclerosis. We evaluated liver and plasma lipids in WTD-fed mice with hepatocyte-specific ablation of the non-redundant γ-secretase-targeting subunit Nicastrin (L-Ncst). In parallel, we investigated the effect of liver-selective Ncst antisense oligonucleotides (ASO) on lipid metabolism and atherosclerosis in wildtype (WT) and ApoE knockout (ApoE-/-) mice fed normal chow or WTD. WTD-fed L-Ncst and Ncst ASO-treated WT mice showed reduced total cholesterol and LDL-cholesterol (LDL-C), as well as reduced hepatic lipid content as compared to Cre- and control ASO-treated WT mice. Treatment of WTD-fed ApoE-/- mice with Ncst ASO markedly lowered total and LDL cholesterol, hepatic TG and attenuated atherosclerotic lesions in the aorta, as compared to control ASO-treated mice. L-Ncst and Ncst ASO similarly showed reduced plasma glucose as compared to control mice. In conclusion, inhibition of hepatic γ-secretase reduces plasma glucose, and attenuates WTD-induced dyslipidemia, hepatic fat accumulation and atherosclerosis, suggesting potential pleiotropic application for diet-induced metabolic dysfunction.


Subject(s)
Amyloid Precursor Protein Secretases/genetics , Atherosclerosis/therapy , Dyslipidemias/therapy , Fatty Liver/therapy , Membrane Glycoproteins/genetics , Oligonucleotides, Antisense/therapeutic use , Animals , Atherosclerosis/blood , Atherosclerosis/etiology , Atherosclerosis/genetics , Diet, Western/adverse effects , Dyslipidemias/blood , Dyslipidemias/etiology , Dyslipidemias/genetics , Fatty Liver/blood , Fatty Liver/etiology , Fatty Liver/genetics , Gene Knockout Techniques , Genetic Therapy , Lipids/analysis , Lipids/blood , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL
5.
J Cardiovasc Electrophysiol ; 31(6): 1249-1254, 2020 06.
Article in English | MEDLINE | ID: mdl-32281214

ABSTRACT

A global coronavirus (COVID-19) pandemic occurred at the start of 2020 and is already responsible for more than 74 000 deaths worldwide, just over 100 years after the influenza pandemic of 1918. At the center of the crisis is the highly infectious and deadly SARS-CoV-2, which has altered everything from individual daily lives to the global economy and our collective consciousness. Aside from the pulmonary manifestations of disease, there are likely to be several electrophysiologic (EP) sequelae of COVID-19 infection and its treatment, due to consequences of myocarditis and the use of QT-prolonging drugs. Most crucially, the surge in COVID-19 positive patients that have already overwhelmed the New York City hospital system requires conservation of hospital resources including personal protective equipment (PPE), reassignment of personnel, and reorganization of institutions, including the EP laboratory. In this proposal, we detail the specific protocol changes that our EP department has adopted during the COVID-19 pandemic, including performance of only urgent/emergent procedures, after hours/7-day per week laboratory operation, single attending-only cases to preserve PPE, appropriate use of PPE, telemedicine and video chat follow-up appointments, and daily conferences to collectively manage the clinical and ethical dilemmas to come. We discuss also discuss how we perform EP procedures on presumed COVID positive and COVID tested positive patients to highlight issues that others in the EP community may soon face in their own institution as the virus continues to spread nationally and internationally.


Subject(s)
Academic Medical Centers/supply & distribution , Betacoronavirus , Coronavirus Infections/diagnosis , Electrophysiology/methods , Personal Protective Equipment/standards , Pneumonia, Viral/diagnosis , COVID-19 , Humans , Pandemics , SARS-CoV-2
6.
J Cardiovasc Electrophysiol ; 31(12): 3086-3096, 2020 12.
Article in English | MEDLINE | ID: mdl-33022765

ABSTRACT

INTRODUCTION: Electrocardiographic characteristics in COVID-19-related mortality have not yet been reported, particularly in racial/ethnic minorities. METHODS AND RESULTS: We reviewed demographics, laboratory and cardiac tests, medications, and cardiac rhythm proximate to death or initiation of comfort care for patients hospitalized with a positive SARS-CoV-2 reverse-transcriptase polymerase chain reaction in three New York City hospitals between March 1 and April 3, 2020 who died. We described clinical characteristics and compared factors contributing toward arrhythmic versus nonarrhythmic death. Of 1258 patients screened, 133 died and were enrolled. Of these, 55.6% (74/133) were male, 69.9% (93/133) were racial/ethnic minorities, and 88.0% (117/133) had cardiovascular disease. The last cardiac rhythm recorded was VT or fibrillation in 5.3% (7/133), pulseless electrical activity in 7.5% (10/133), unspecified bradycardia in 0.8% (1/133), and asystole in 26.3% (35/133). Most 74.4% (99/133) died receiving comfort measures only. The most common abnormalities on admission electrocardiogram included abnormal QRS axis (25.8%), atrial fibrillation/flutter (14.3%), atrial ectopy (12.0%), and right bundle branch block (11.9%). During hospitalization, an additional 17.6% developed atrial ectopy, 14.7% ventricular ectopy, 10.1% atrial fibrillation/flutter, and 7.8% a right ventricular abnormality. Arrhythmic death was confirmed or suspected in 8.3% (11/133) associated with age, coronary artery disease, asthma, vasopressor use, longer admission corrected QT interval, and left bundle branch block (LBBB). CONCLUSIONS: Conduction, rhythm, and electrocardiographic abnormalities were common during COVID-19-related hospitalization. Arrhythmic death was associated with age, coronary artery disease, asthma, longer admission corrected QT interval, LBBB, ventricular ectopy, and usage of vasopressors. Most died receiving comfort measures.


Subject(s)
Arrhythmias, Cardiac/mortality , COVID-19/mortality , Hospital Mortality , Aged , Aged, 80 and over , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/ethnology , Arrhythmias, Cardiac/therapy , COVID-19/diagnosis , COVID-19/ethnology , COVID-19/therapy , Cause of Death , Comorbidity , Electrocardiography , Female , Heart Disease Risk Factors , Hospital Mortality/ethnology , Hospitalization , Humans , Male , Middle Aged , New York City/epidemiology , Prognosis , Race Factors , Retrospective Studies , Risk Assessment , Time Factors
7.
Indian Pacing Electrophysiol J ; 20(6): 250-256, 2020.
Article in English | MEDLINE | ID: mdl-32861812

ABSTRACT

BACKGROUND: The COVID-19 pandemic has greatly altered the practice of cardiac electrophysiology around the world for the foreseeable future. Professional organizations have provided guidance for practitioners, but real-world examples of the consults and responsibilities cardiac electrophysiologists face during a surge of COVID-19 patients is lacking. METHODS: In this observational case series we report on 29 consecutive inpatient electrophysiology consultations at a major academic medical center in New York City, the epicenter of the pandemic in the United States, during a 2 week period from March 30-April 12, 2020, when 80% of hospital beds were occupied by COVID-19 patients, and the New York City metropolitan area accounted for 10% of COVID-19 cases worldwide. RESULTS: Reasons for consultation included: Atrial tachyarrhythmia (31%), cardiac implantable electronic device management (28%), bradycardia (14%), QTc prolongation (10%), ventricular arrhythmia (7%), post-transcatheter aortic valve replacement conduction abnormality (3.5%), ventricular pre-excitation (3.5%), and paroxysmal supraventricular tachycardia (3.5%). Twenty-four patients (86%) were positive for COVID-19 by nasopharyngeal swab. All elective procedures were canceled, and only one urgent device implantation was performed. Thirteen patients (45%) required in-person evaluation and the remainder were managed remotely. CONCLUSION: Our experience shows that the application of a massive alteration in workflow and personnel forced by the pandemic allowed our team to efficiently address the intersection of COVID-19 with a range of electrophysiology issues. This experience will prove useful as guidance for emerging hot spots or areas affected by future waves of the pandemic.

8.
Hum Mol Genet ; 26(2): 333-343, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28069793

ABSTRACT

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is characterized by cardiac conduction abnormalities and left ventricular systolic dysfunction predisposing to heart failure. Previous cardiac transcriptional profiling of LmnaH222P/H222P mouse, a small animal model of LMNA cardiomyopathy, suggested decreased WNT/ß-catenin signalling. We confirmed decreased WNT/ß-catenin signalling in the hearts of these mice by demonstrating decreased ß-catenin and WNT proteins. This was correlated with increased expression of soluble Frizzled-related proteins that modulate the WNT/ß-catenin signalling pathway. Hearts of LmnaH222P/H222P mice also demonstrated lowered expression of the gap junction connexin 43. Activation of WNT/ß-catenin activity with 6-bromoindirubin-3'-oxime improved cardiac contractility and ameliorated intraventricular conduction defects in LmnaH222P/H222P mice, which was associated with increased expression of myocardial connexin 43. These results indicate that decreased WNT/ß-catenin contributes to the pathophysiology of LMNA cardiomyopathy and that drugs activating ß-catenin may be beneficial in affected individuals.


Subject(s)
Cardiomyopathy, Dilated/genetics , Connexin 43/genetics , Lamin Type A/genetics , beta Catenin/genetics , Animals , Cardiomyopathy, Dilated/drug therapy , Cardiomyopathy, Dilated/physiopathology , Connexin 43/biosynthesis , Disease Models, Animal , Gene Expression Regulation/drug effects , Glycoproteins/biosynthesis , Glycoproteins/genetics , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Indoles/administration & dosage , Intracellular Signaling Peptides and Proteins , Mice , Mutation , Oximes/administration & dosage , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology , Wnt Proteins/genetics , Wnt Signaling Pathway/drug effects , beta Catenin/biosynthesis
9.
Hum Mol Genet ; 25(11): 2220-2233, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27131347

ABSTRACT

Cardiomyopathy caused by lamin A/C gene mutations (LMNA cardiomyopathy) is characterized by increased myocardial fibrosis, which impairs left ventricular relaxation and predisposes to heart failure, and cardiac conduction abnormalities. While we previously discovered abnormally elevated extracellular signal-regulated kinase 1/2 (ERK1/2) activities in heart in LMNA cardiomyopathy, its role on the development of myocardial fibrosis remains unclear. We now showed that transforming growth factor (TGF)-ß/Smad signaling participates in the activation of ERK1/2 signaling in LMNA cardiomyopathy. ERK1/2 acts on connective tissue growth factor (CTGF/CCN2) expression to mediate the myocardial fibrosis and left ventricular dysfunction. Studies in vivo demonstrate that inhibiting CTGF/CCN2 using a specific antibody decreases myocardial fibrosis and improves the left ventricular dysfunction. Together, these findings show that cardiac ERK1/2 activity is modulated in part by TGF-ß/Smad signaling, leading to altered activation of CTGF/CCN2 to mediate fibrosis and alter cardiac function. This identifies a novel mechanism in the development of LMNA cardiomyopathy.


Subject(s)
Cardiomyopathies/genetics , Connective Tissue Growth Factor/genetics , Fibrosis/genetics , Lamin Type A/genetics , Transforming Growth Factor beta/genetics , Animals , Cardiomyopathies/pathology , Fibrosis/pathology , Humans , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Smad Proteins/genetics , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology
10.
Circ Res ; 113(8): 1004-12, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23836795

ABSTRACT

RATIONALE: Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. OBJECTIVE: We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. METHODS AND RESULTS: In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6c(LO) myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk(+/+) marrow into Mertk(-/-) mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. CONCLUSIONS: These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.


Subject(s)
Apoptosis , Inflammation/enzymology , Macrophages/enzymology , Myocardial Infarction/enzymology , Myocytes, Cardiac/enzymology , Phagocytosis , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Wound Healing , Animals , Antigens, Ly/metabolism , Bone Marrow Transplantation , CD36 Antigens/deficiency , CD36 Antigens/genetics , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/deficiency , Receptor Protein-Tyrosine Kinases/genetics , Recovery of Function , Signal Transduction , Time Factors , Transplantation Chimera , Ventricular Function, Left , Ventricular Remodeling , c-Mer Tyrosine Kinase
11.
J Mol Cell Cardiol ; 75: 58-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25008120

ABSTRACT

Pathologic cardiac hypertrophy can lead to heart failure, but the mechanisms involved are poorly understood. SERCA2 is critical for normal cardiac calcium handling and function and SERCA2 mRNA and protein levels are reduced by cardiac hypertrophy. We hypothesized that extracellular signal-regulated kinase (ERK) 1/2 activation during hypertrophy reduced SERCA2 transcription. Using a neonatal rat ventricular myocyte model of hypertrophy, we found that pharmacologic inhibitors of ERK activation preserve SERCA2 mRNA levels during hypertrophy. ERK activation is sufficient to reduce SERCA2 mRNA. We determined that ERK represses SERCA2 transcription via nuclear factor-kappaB (NFkB), and activation of NFkB is sufficient to reduce SERCA2 mRNA in cardiomyocytes. This work establishes novel connections between ERK, NFkB, and SERCA2 repression during cardiac hypertrophy. This mechanism may have implications for the progression of hypertrophy to heart failure.


Subject(s)
Cardiomegaly/enzymology , Cardiomegaly/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Transcription, Genetic , Animals , Animals, Newborn , Gene Expression Regulation , Humans , Mice , Models, Biological , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Phenylephrine , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
12.
J Mol Cell Cardiol ; 59: 151-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23517696

ABSTRACT

In humans, obesity is associated with long QT, increased frequency of premature ventricular complexes, and sudden cardiac death. The mechanisms of the pro-arrhythmic electrophysiologic remodeling of obesity are poorly understood. We tested the hypothesis that there is decreased expression of voltage-gated potassium channels in the obese heart, leading to long QT. Using implanted telemeters, we found that diet-induced obese (DIO) wild-type mice have impaired cardiac repolarization, demonstrated by long QT, as well as more frequent ventricular ectopy, similar to obese humans. DIO mice have reduced protein and mRNA levels of the potassium channel Kv1.5 caused by a reduction of the transcription factor cyclic AMP response element binding protein (CREB) in DIO hearts. We found that CREB knock-down by siRNA reduces Kv1.5, CREB binds to the Kv1.5 promoter in the heart, and CREB increases transcription of mouse and human Kv1.5 promoters. The reduction in CREB protein during lipotoxicity can be rescued by inhibiting protein kinase D (PKD). Our results identify a mechanism for obesity-induced electrophysiologic remodeling in the heart, namely PKD-induced reduction of CREB, which in turn decreases expression of the potassium channel Kv1.5.


Subject(s)
Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Diet, High-Fat/adverse effects , Long QT Syndrome/etiology , Long QT Syndrome/metabolism , Obesity/complications , Obesity/etiology , Obesity/metabolism , Potassium Channels, Voltage-Gated/metabolism , Animals , Cell Line , Chromatin Immunoprecipitation , Cyclic AMP Response Element-Binding Protein , Immunoblotting , Kv1.5 Potassium Channel/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Kinase C/metabolism , Rats , Real-Time Polymerase Chain Reaction
13.
Circulation ; 124(25): 2812-21, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22124376

ABSTRACT

BACKGROUND: Diabetes mellitus and obesity, which confer an increased risk of sudden cardiac death, are associated with cardiomyocyte lipid accumulation and altered cardiac electric properties, manifested by prolongation of the QRS duration and QT interval. It is difficult to distinguish the contribution of cardiomyocyte lipid accumulation from the contribution of global metabolic defects to the increased incidence of sudden death and electric abnormalities. METHODS AND RESULTS: In order to study the effects of metabolic abnormalities on arrhythmias without the complex systemic effects of diabetes mellitus and obesity, we studied transgenic mice with cardiac-specific overexpression of peroxisome proliferator-activated receptor γ 1 (PPARγ1) via the cardiac α-myosin heavy-chain promoter. The PPARγ transgenic mice develop abnormal accumulation of intracellular lipids and die as young adults before any significant reduction in systolic function. Using implantable ECG telemeters, we found that these mice have prolongation of the QRS and QT intervals and spontaneous ventricular arrhythmias, including polymorphic ventricular tachycardia and ventricular fibrillation. Isolated cardiomyocytes demonstrated prolonged action potential duration caused by reduced expression and function of the potassium channels responsible for repolarization. Short-term exposure to pioglitazone, a PPARγ agonist, had no effect on mortality or rhythm in WT mice but further exacerbated the arrhythmic phenotype and increased the mortality in the PPARγ transgenic mice. CONCLUSIONS: Our findings support an important link between PPARγ activation, cardiomyocyte lipid accumulation, ion channel remodeling, and increased cardiac mortality.


Subject(s)
PPAR gamma/genetics , Refractory Period, Electrophysiological/physiology , Tachycardia, Ventricular/physiopathology , Ventricular Fibrillation/physiopathology , Action Potentials/physiology , Animals , Calcium/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Death, Sudden, Cardiac/epidemiology , Disease Models, Animal , Electrocardiography , Hypoglycemic Agents/pharmacology , Incidence , Lipid A/metabolism , Mice , Mice, Transgenic , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , PPAR gamma/physiology , Phenotype , Pioglitazone , Potassium/metabolism , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/physiology , Refractory Period, Electrophysiological/drug effects , Sodium/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/mortality , Thiazolidinediones/pharmacology , Ventricular Fibrillation/genetics , Ventricular Fibrillation/mortality , Ventricular Remodeling/physiology
14.
FASEB J ; 25(3): 928-36, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21127204

ABSTRACT

The cardiac voltage-gated Ca(2+) channel, Ca(v)1.2, mediates excitation-contraction coupling in the heart. The molecular composition of the channel includes the pore-forming α1 subunit and auxiliary α2/δ-1 and ß subunits. Ca(2+) channel γ subunits, of which there are 8 isoforms, consist of 4 transmembrane domains with intracellular N- and C-terminal ends. The γ1 subunit was initially detected in the skeletal muscle Ca(v)1.1 channel complex, modulating current amplitude and activation and inactivation properties. The γ1 subunit also shifts the steady-state inactivation to more negative membrane potentials, accelerates current inactivation, and increases peak currents, when coexpressed with the cardiac α1c subunit in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. The γ1 subunit is not expressed, however, in cardiac muscle. We sought to determine whether γ subunits that are expressed in cardiac tissue physically associate with and modulate Ca(v)1.2 function. We now demonstrate that γ4, γ6, γ7, and γ8 subunits physically interact with the Ca(v)1.2 complex. The γ subunits differentially modulate Ca(2+) channel function when coexpressed with the ß1b and α2/δ-1 subunits in HEK cells, altering both activation and inactivation properties. The effects of γ on Ca(v)1.2 function are dependent on the subtype of ß subunit. Our results identify new members of the cardiac Ca(v)1.2 macromolecular complex and identify a mechanism by which to increase the functional diversity of Ca(v)1.2 channels.


Subject(s)
Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Heart/physiology , Protein Subunits/genetics , Protein Subunits/metabolism , Animals , Calcium Channels, L-Type/chemistry , HEK293 Cells , Humans , Isomerism , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Membrane Potentials/physiology , Mice , Models, Chemical , Mutagenesis, Site-Directed , Oocytes/physiology , Patch-Clamp Techniques , Protein Subunits/chemistry , Rats , Xenopus
15.
iScience ; 25(5): 104184, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494220

ABSTRACT

The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.

16.
Nat Cardiovasc Res ; 1(2): 142-156, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36051854

ABSTRACT

Some missense gain-of-function mutations in CACNA1C gene, encoding calcium channel CaV1.2, cause a life-threatening form of long QT syndrome named Timothy syndrome, with currently no clinically-effective therapeutics. Here we report that pharmacological targeting of sigma non-opioid intracellular receptor 1 (SIGMAR1) can restore electrophysiological function in iPSC-derived cardiomyocytes generated from patients with Timothy syndrome and two common forms of long QT syndrome, type 1 (LQTS1) and 2 (LQTS2), caused by missense trafficking mutations in potassium channels. Electrophysiological recordings demonstrate that an FDA-approved cough suppressant, dextromethorphan, can be used as an agonist of SIGMAR1, to shorten the prolonged action potential in Timothy syndrome cardiomyocytes and human cellular models of LQTS1 and LQTS2. When tested in vivo, dextromethorphan also normalized the prolonged QT intervals in Timothy syndrome model mice. Overall, our study demonstrates that SIGMAR1 is a potential therapeutic target for Timothy syndrome and possibly other inherited arrhythmias such as LQTS1 and LQTS2.

17.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36424916

ABSTRACT

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

18.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33586686

ABSTRACT

Different fat depots have different physiologic functions. In a provocative study published in this issue of the JCI, Petrosino et al. investigate the role of paracardial fat in whole-body metabolism and exercise physiology. Petrosino et al. show that paracardial fat samples from older mice or mice fed a Western diet had decreased levels of alcohol dehydrogenase 1 (ADH1). Paracardial fat samples from humans with obesity also had decreased levels of ADH1 mRNA, supporting the translational relevance. Additional experiments with Adh1-KO mice and surgical fat transplantation experiments provide additional mechanistic insight. Paracardial fat may regulate exercise performance by altering circulating metabolites and/or endocrine effects. ADH1 appears to regulate the mitochondrial content of paracardial fat, a mechanism mediated by retinaldehyde. When ADH1 is active, the paracardial fat has characteristics of brown fat, which is beneficial for exercise performance. Further research is warranted to determine the translational potential of these findings, such as whether removing paracardial fat at the time of open-heart surgery might improve recovery time by increasing exercise capacity.


Subject(s)
Obesity , Vitamin A , Adipose Tissue, Brown , Animals , Mice , Obesity/genetics
20.
Sci Rep ; 11(1): 17808, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497331

ABSTRACT

Obesity and diabetes increase the risk of arrhythmia and sudden cardiac death. However, the molecular mechanisms of arrhythmia caused by metabolic abnormalities are not well understood. We hypothesized that mitochondrial dysfunction caused by high fat diet (HFD) promotes ventricular arrhythmia. Based on our previous work showing that saturated fat causes calcium handling abnormalities in cardiomyocytes, we hypothesized that mitochondrial calcium uptake contributes to HFD-induced mitochondrial dysfunction and arrhythmic events. For experiments, we used mice with conditional cardiac-specific deletion of the mitochondrial calcium uniporter (Mcu), which is required for mitochondrial calcium uptake, and littermate controls. Mice were used for in vivo heart rhythm monitoring, perfused heart experiments, and isolated cardiomyocyte experiments. MCU KO mice are protected from HFD-induced long QT, inducible ventricular tachycardia, and abnormal ventricular repolarization. Abnormal repolarization may be due, at least in part, to a reduction in protein levels of voltage gated potassium channels. Furthermore, isolated cardiomyocytes from MCU KO mice exposed to saturated fat are protected from increased reactive oxygen species (ROS), mitochondrial dysfunction, and abnormal calcium handling. Activation of calmodulin-dependent protein kinase (CaMKII) corresponds with the increase in arrhythmias in vivo. Additional experiments showed that CaMKII inhibition protects cardiomyocytes from the mitochondrial dysfunction caused by saturated fat. Hearts from transgenic CaMKII inhibitor mice were protected from inducible ventricular tachycardia after HFD. These studies identify mitochondrial dysfunction caused by calcium overload as a key mechanism of arrhythmia during HFD. This work indicates that MCU and CaMKII could be therapeutic targets for arrhythmia caused by metabolic abnormalities.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcium Channels/metabolism , Diet, High-Fat , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium Channels/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mice , Mice, Knockout , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL