Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Immunol ; 22(5): 595-606, 2021 05.
Article in English | MEDLINE | ID: mdl-33903766

ABSTRACT

Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1-CSF1R-C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker.


Subject(s)
Biomarkers, Tumor/metabolism , Heme Oxygenase-1/metabolism , Lung Neoplasms/immunology , Melanoma/immunology , Skin Neoplasms/immunology , Tumor-Associated Macrophages/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/blood , Cell Line, Tumor/transplantation , Chemotherapy, Adjuvant/methods , Disease Models, Animal , Epithelial-Mesenchymal Transition/immunology , Female , Heme/metabolism , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/blood , Heme Oxygenase-1/genetics , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Male , Melanoma/mortality , Melanoma/secondary , Melanoma/therapy , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Myeloid Progenitor Cells/immunology , Myeloid Progenitor Cells/metabolism , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Tumor Escape/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism
2.
J Transl Med ; 22(1): 223, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429759

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor, that is refractory to standard treatment and to immunotherapy with immune-checkpoint inhibitors (ICI). Noteworthy, melanoma brain metastases (MM-BM), that share the same niche as GBM, frequently respond to current ICI therapies. Epigenetic modifications regulate GBM cellular proliferation, invasion, and prognosis and may negatively regulate the cross-talk between malignant cells and immune cells in the tumor milieu, likely contributing to limit the efficacy of ICI therapy of GBM. Thus, manipulating the tumor epigenome can be considered a therapeutic opportunity in GBM. METHODS: Microarray transcriptional and methylation profiles, followed by gene set enrichment and IPA analyses, were performed to study the differences in the constitutive expression profiles of GBM vs MM-BM cells, compared to the extracranial MM cells and to investigate the modulatory effects of the DNA hypomethylating agent (DHA) guadecitabine among the different tumor cells. The prognostic relevance of DHA-modulated genes was tested by Cox analysis in a TCGA GBM patients' cohort. RESULTS: The most striking differences between GBM and MM-BM cells were found to be the enrichment of biological processes associated with tumor growth, invasion, and extravasation with the inhibition of MHC class II antigen processing/presentation in GBM cells. Treatment with guadecitabine reduced these biological differences, shaping GBM cells towards a more immunogenic phenotype. Indeed, in GBM cells, promoter hypomethylation by guadecitabine led to the up-regulation of genes mainly associated with activation, proliferation, and migration of T and B cells and with MHC class II antigen processing/presentation. Among DHA-modulated genes in GBM, 7.6% showed a significant prognostic relevance. Moreover, a large set of immune-related upstream-regulators (URs) were commonly modulated by DHA in GBM, MM-BM, and MM cells: DHA-activated URs enriched for biological processes mainly involved in the regulation of cytokines and chemokines production, inflammatory response, and in Type I/II/III IFN-mediated signaling; conversely, DHA-inhibited URs were involved in metabolic and proliferative pathways. CONCLUSIONS: Epigenetic remodeling by guadecitabine represents a promising strategy to increase the efficacy of cancer immunotherapy of GBM, supporting the rationale to develop new epigenetic-based immunotherapeutic approaches for the treatment of this still highly deadly disease.


Subject(s)
Azacitidine/analogs & derivatives , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Azacitidine/therapeutic use , Epigenesis, Genetic , Immunotherapy
3.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511376

ABSTRACT

Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota and other modifiable patient factors (e.g., diet and body composition), though their role in influencing therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unresectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition, nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to our data, patients subsequently classified as responders were obese (i.e., with high body mass index and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand, non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This exploratory study provides an integrated list of potential early prognostic biomarkers that could improve the clinical management of patients with advanced melanoma, in particular by guiding the design of adjuvant therapeutic strategies to improve treatment response and support long-term health improvement.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Skin Neoplasms , Humans , Gastrointestinal Microbiome/physiology , Melanoma/therapy , RNA, Ribosomal, 16S/genetics , Skin Neoplasms/therapy , Metabolome , Feces/microbiology , Body Composition
4.
J Natl Compr Canc Netw ; 18(10): 1327-1336, 2020 10.
Article in English | MEDLINE | ID: mdl-33022642

ABSTRACT

BACKGROUND: Atypical melanocytic tumors (AMTs) include a wide spectrum of melanocytic neoplasms that represent a challenge for clinicians due to the lack of a definitive diagnosis and the related uncertainty about their management. This study analyzed clinicopathologic features and sentinel node status as potential prognostic factors in patients with AMTs. PATIENTS AND METHODS: Clinicopathologic and follow-up data of 238 children, adolescents, and adults with histologically proved AMTs consecutively treated at 12 European centers from 2000 through 2010 were retrieved from prospectively maintained databases. The binary association between all investigated covariates was studied by evaluating the Spearman correlation coefficients, and the association between progression-free survival and all investigated covariates was evaluated using univariable Cox models. The overall survival and progression-free survival curves were established using the Kaplan-Meier method. RESULTS: Median follow-up was 126 months (interquartile range, 104-157 months). All patients received an initial diagnostic biopsy followed by wide (1 cm) excision. Sentinel node biopsy was performed in 139 patients (58.4%), 37 (26.6%) of whom had sentinel node positivity. There were 4 local recurrences, 43 regional relapses, and 8 distant metastases as first events. Six patients (2.5%) died of disease progression. Five patients who were sentinel node-negative and 3 patients who were sentinel node-positive developed distant metastases. Ten-year overall and progression-free survival rates were 97% (95% CI, 94.9%-99.2%) and 82.2% (95% CI, 77.3%-87.3%), respectively. Age, mitotic rate/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss were factors affecting prognosis in the whole series and the sentinel node biopsy subgroup. CONCLUSIONS: Age >20 years, mitotic rate >4/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss proved to be worse prognostic factors in patients with ATMs. Sentinel node status was not a clear prognostic predictor.


Subject(s)
Melanoma , Sentinel Lymph Node Biopsy , Skin Neoplasms , Adolescent , Adult , Child , Disease-Free Survival , Humans , Lymphatic Metastasis , Melanoma/diagnosis , Mitosis , Neoplasm Recurrence, Local , Prognosis , Retrospective Studies , Skin Neoplasms/diagnosis , Young Adult
5.
Cancer Immunol Immunother ; 67(6): 1011-1022, 2018 06.
Article in English | MEDLINE | ID: mdl-29516154

ABSTRACT

Immunotherapy of non-small cell lung cancer (NSCLC), by immune checkpoint inhibitors, has profoundly improved the clinical management of advanced disease. However, only a fraction of patients respond and no effective predictive factors have been defined. Here, we discuss the prospects for identification of such predictors of response to immunotherapy, by fostering an in-depth analysis of the immune landscape of NSCLC. The emerging picture, from several recent studies, is that the immune contexture of NSCLC lesions is a complex and heterogeneous feature, as documented by analysis for frequency, phenotype and spatial distribution of innate and adaptive immune cells, and by characterization of functional status of inhibitory receptor+ T cells. The complexity of the immune landscape of NSCLC stems from the interaction of several factors, including tumor histology, molecular subtype, main oncogenic drivers, nonsynonymous mutational load, tumor aneuploidy, clonal heterogeneity and tumor evolution, as well as the process of epithelial-mesenchymal transition. All these factors contribute to shape NSCLC immune profiles that have clear prognostic significance. An integrated analysis of the immune and molecular profile of the neoplastic lesions may allow to define the potential predictive role of the immune landscape for response to immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Immunotherapy/methods , Lung Neoplasms/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Prognosis , Prospective Studies
6.
BMC Cancer ; 14: 560, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25085576

ABSTRACT

BACKGROUND: In addition to alterations concerning the expression of oncogenes and onco-suppressors, melanoma is characterized by the presence of distinctive gangliosides (sialic acid carrying glycosphingolipids). Gangliosides strongly control cell surface dynamics and signaling; therefore, it could be assumed that these alterations are linked to modifications of cell behavior acquired by the tumor. On these bases, this work investigated the correlations between melanoma cell ganglioside metabolism profiles and the biological features of the tumor and the survival of patients. METHODS: Melanoma cell lines were established from surgical specimens of AJCC stage III and IV melanoma patients. Sphingolipid analysis was carried out on melanoma cell lines and melanocytes through cell metabolic labeling employing [3-3H]sphingosine and by FACS. N-glycolyl GM3 was identified employing the 14 F7 antibody. Gene expression was assayed by Real Time PCR. Cell invasiveness was assayed through a Matrigel invasion assay; cell proliferation was determined through the soft agar assay, MTT, and [3H] thymidine incorporation. Statistical analysis was performed using XLSTAT software for melanoma hierarchical clustering based on ganglioside profile, the Kaplan-Meier method, the log-rank (Mantel-Cox) test, and the Mantel-Haenszel test for survival analysis. RESULTS: Based on the ganglioside profiles, through a hierarchical clustering, we classified melanoma cells isolated from patients into three clusters: 1) cluster 1, characterized by high content of GM3, mainly in the form of N-glycolyl GM3, and GD3; 2) cluster 2, characterized by the appearance of complex gangliosides and by a low content of GM3; 3) cluster 3, which showed an intermediate phenotype between cluster 1 and cluster 3. Moreover, our data demonstrated that: a) a correlation could be traced between patients' survival and clusters based on ganglioside profiles, with cluster 1 showing the worst survival; b) the expression of several enzymes (sialidase NEU3, GM2 and GM1 synthases) involved in ganglioside metabolism was associated with patients' survival; c) melanoma clusters showed different malignant features such as growth in soft agar, invasiveness, expression of anti-apoptotic proteins. CONCLUSIONS: Ganglioside profile and metabolism is strictly interconnected with melanoma aggressiveness. Therefore, the profiling of melanoma gangliosides and enzymes involved in their metabolism could represent a useful prognostic and diagnostic tool.


Subject(s)
Gangliosides/metabolism , Melanoma/pathology , Cluster Analysis , Gene Expression Regulation, Neoplastic , Glycosyltransferases/metabolism , Humans , Melanoma/metabolism , Neoplasm Metastasis , Prognosis , Survival Analysis , Tumor Cells, Cultured
7.
Front Immunol ; 15: 1336566, 2024.
Article in English | MEDLINE | ID: mdl-38510242

ABSTRACT

Introduction: About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results: By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion: Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Mice , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Proto-Oncogene Proteins B-raf , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , ErbB Receptors , Antibody-Dependent Cell Cytotoxicity
8.
Nat Commun ; 14(1): 5914, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739939

ABSTRACT

Association with hypomethylating agents is a promising strategy to improve the efficacy of immune checkpoint inhibitors-based therapy. The NIBIT-M4 was a phase Ib, dose-escalation trial in patients with advanced melanoma of the hypomethylating agent guadecitabine combined with the anti-CTLA-4 antibody ipilimumab that followed a traditional 3 + 3 design (NCT02608437). Patients received guadecitabine 30, 45 or 60 mg/m2/day subcutaneously on days 1 to 5 every 3 weeks starting on week 0 for a total of four cycles, and ipilimumab 3 mg/kg intravenously starting on day 1 of week 1 every 3 weeks for a total of four cycles. Primary outcomes of safety, tolerability, and maximum tolerated dose of treatment were previously reported. Here we report the 5-year clinical outcome for the secondary endpoints of overall survival, progression free survival, and duration of response, and an exploratory integrated multi-omics analysis on pre- and on-treatment tumor biopsies. With a minimum follow-up of 45 months, the 5-year overall survival rate was 28.9% and the median duration of response was 20.6 months. Re-expression of immuno-modulatory endogenous retroviruses and of other repetitive elements, and a mechanistic signature of guadecitabine are associated with response. Integration of a genetic immunoediting index with an adaptive immunity signature stratifies patients/lesions into four distinct subsets and discriminates 5-year overall survival and progression free survival. These results suggest that coupling genetic immunoediting with activation of adaptive immunity is a relevant requisite for achieving long term clinical benefit by epigenetic immunomodulation in advanced melanoma patients.


Subject(s)
Melanoma , Multiomics , Humans , Ipilimumab/therapeutic use , Follow-Up Studies , Melanoma/drug therapy , Melanoma/genetics
9.
J Immunother Cancer ; 11(6)2023 06.
Article in English | MEDLINE | ID: mdl-37286305

ABSTRACT

BACKGROUND: Chemoimmunotherapy represents the standard of care for patients with advanced non-small cell lung cancer (NSCLC) and programmed death-ligand 1 (PD-L1) <50%. Although single-agent pembrolizumab has also demonstrated some activity in this setting, no reliable biomarkers yet exist for selecting patients likely to respond to single-agent immunotherapy. The main purpose of the study was to identify potential new biomarkers associated with progression-free-survival (PFS) within a multiomics analysis. METHODS: PEOPLE (NTC03447678) was a prospective phase II trial evaluating first-line pembrolizumab in patients with advanced EGFR and ALK wild type treatment-naïve NSCLC with PD-L1 <50%. Circulating immune profiling was performed by determination of absolute cell counts with multiparametric flow cytometry on freshly isolated whole blood samples at baseline and at first radiological evaluation. Gene expression profiling was performed using nCounter PanCancer IO 360 Panel (NanoString) on baseline tissue. Gut bacterial taxonomic abundance was obtained by shotgun metagenomic sequencing of stool samples at baseline. Omics data were analyzed with sequential univariate Cox proportional hazards regression predicting PFS, with Benjamini-Hochberg multiple comparisons correction. Biological features significant with univariate analysis were analyzed with multivariate least absolute shrinkage and selection operator (LASSO). RESULTS: From May 2018 to October 2020, 65 patients were enrolled. Median follow-up and PFS were 26.4 and 2.9 months, respectively. LASSO integration analysis, with an optimal lambda of 0.28, showed that peripheral blood natural killer cells/CD56dimCD16+ (HR 0.56, 0.41-0.76, p=0.006) abundance at baseline and non-classical CD14dimCD16+monocytes (HR 0.52, 0.36-0.75, p=0.004), eosinophils (CD15+CD16-) (HR 0.62, 0.44-0.89, p=0.03) and lymphocytes (HR 0.32, 0.19-0.56, p=0.001) after first radiologic evaluation correlated with favorable PFS as well as high baseline expression levels of CD244 (HR 0.74, 0.62-0.87, p=0.05) protein tyrosine phosphatase receptor type C (HR 0.55, 0.38-0.81, p=0.098) and killer cell lectin like receptor B1 (HR 0.76, 0.66-0.89, p=0.05). Interferon-responsive factor 9 and cartilage oligomeric matrix protein genes correlated with unfavorable PFS (HR 3.03, 1.52-6.02, p 0.08 and HR 1.22, 1.08-1.37, p=0.06, corrected). No microbiome features were selected. CONCLUSIONS: This multiomics approach was able to identify immune cell subsets and expression levels of genes associated to PFS in patients with PD-L1 <50% NSCLC treated with first-line pembrolizumab. These preliminary data will be confirmed in the larger multicentric international I3LUNG trial (NCT05537922). TRIAL REGISTRATION NUMBER: 2017-002841-31.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , B7-H1 Antigen/metabolism , Multiomics , Prospective Studies , Biomarkers
10.
Br J Haematol ; 158(1): 108-19, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22571717

ABSTRACT

The safety and activity of the multikinase inhibitor sorafenib were investigated in patients with relapsed or refractory lymphoproliferative disorders who received sorafenib (400 mg) twice daily until disease progression or appearance of significant clinical toxicity. The primary endpoint was overall response rate (ORR). Biomarkers of sorafenib activity were analysed at baseline and during treatment. Thirty patients (median age, 61 years; range, 18-74) received a median of 4 months of therapy. Grade 3-4 toxicities included hand/foot skin reactions (20%), infections (12%), neutropenia (20%) and thrombocytopenia (14%). Two patients achieved complete remission (CR), and two achieved partial remission (PR) for an ORR of 13%. Stable disease (SD) and progressive disease (PD) was observed in 15 (50%) and 11 patients (37%), respectively. The median overall survival (OS) for all patients was 16 months. For patients who achieved CR, PR and SD, the median time to progression and OS was 5 and 24 months, respectively. Compared with patients with PD, responsive patients had significantly higher baseline levels of extracellular signal-regulated kinase phosphorylation and autophagy and presented a significant reduction of these parameters after 1 month of therapy. Sorafenib was well tolerated and had a clinical activity that warrants development of combination regimens.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzenesulfonates/therapeutic use , Lymphoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Adolescent , Adult , Aged , Antineoplastic Agents/adverse effects , Benzenesulfonates/adverse effects , Biomarkers, Tumor/blood , Disease-Free Survival , Drug Resistance, Neoplasm , Female , Humans , Lymphoma/blood , Male , Middle Aged , Niacinamide/analogs & derivatives , Phenylurea Compounds , Protein Kinase Inhibitors/adverse effects , Pyridines/adverse effects , Sorafenib , Young Adult
11.
J Exp Clin Cancer Res ; 41(1): 325, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397155

ABSTRACT

BACKGROUND: Improvement of efficacy of immune checkpoint blockade (ICB) remains a major clinical goal. Association of ICB with immunomodulatory epigenetic drugs is an option. However, epigenetic inhibitors show a heterogeneous landscape of activities. Analysis of transcriptional programs induced in neoplastic cells by distinct classes of epigenetic drugs may foster identification of the most promising agents. METHODS: Melanoma cell lines, characterized for mutational and differentiation profile, were treated with inhibitors of DNA methyltransferases (guadecitabine), histone deacetylases (givinostat), BET proteins (JQ1 and OTX-015), and enhancer of zeste homolog 2 (GSK126). Modulatory effects of epigenetic drugs were evaluated at the gene and protein levels. Master molecules explaining changes in gene expression were identified by Upstream Regulator (UR) analysis. Gene set enrichment and IPA were used respectively to test modulation of guadecitabine-specific gene and UR signatures in baseline and on-treatment tumor biopsies from melanoma patients in the Phase Ib NIBIT-M4 Guadecitabine + Ipilimumab Trial. Prognostic significance of drug-specific immune-related genes was tested with Timer 2.0 in TCGA tumor datasets. RESULTS: Epigenetic drugs induced different profiles of gene expression in melanoma cell lines. Immune-related genes were frequently upregulated by guadecitabine, irrespective of the mutational and differentiation profiles of the melanoma cell lines, to a lesser extent by givinostat, but mostly downregulated by JQ1 and OTX-015. GSK126 was the least active drug. Quantitative western blot analysis confirmed drug-specific modulatory profiles. Most of the guadecitabine-specific signature genes were upregulated in on-treatment NIBIT-M4 tumor biopsies, but not in on-treatment lesions of patients treated only with ipilimumab. A guadecitabine-specific UR signature, containing activated molecules of the TLR, NF-kB, and IFN innate immunity pathways, was induced in drug-treated melanoma, mesothelioma and hepatocarcinoma cell lines and in a human melanoma xenograft model. Activation of guadecitabine-specific UR signature molecules in on-treatment tumor biopsies discriminated responding from non-responding NIBIT-M4 patients. Sixty-five % of the immune-related genes upregulated by guadecitabine were prognostically significant and conferred a reduced risk in the TCGA cutaneous melanoma dataset. CONCLUSIONS: The DNMT inhibitor guadecitabine emerged as the most promising immunomodulatory agent among those tested, supporting the rationale for usage of this class of epigenetic drugs in combinatorial immunotherapy approaches.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Ipilimumab/therapeutic use , Skin Neoplasms/genetics , Immunotherapy , Epigenesis, Genetic
12.
Ther Adv Med Oncol ; 14: 17588359221108687, 2022.
Article in English | MEDLINE | ID: mdl-35923922

ABSTRACT

Background: Systemic immunosuppression characterizing cancer patients represents a concern regarding the efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, and real-world evidence is needed to define the efficacy and the dynamics of humoral immune response to mRNA-based anti-SARS-CoV-2 vaccines. Methods: We conducted an observational study that included patients with solid tumors who were candidates for mRNA anti-SARS-CoV-2 vaccination at the Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. The primary objective was to monitor the immunologic response to the mRNA anti-SARS-CoV-2 vaccination in terms of anti-spike antibody levels. All the patients received two doses of the mRNA-1273 vaccine or the BNT162b2 vaccine. Healthcare workers served as a control group of healthy subjects. Results: Among the 243 patients included in the present analysis, 208 (85.60%) and 238 (97.94%) resulted seroconverted after the first and the second dose of vaccine, respectively. Only five patients (2.06%) had a negative titer after the second dose. No significant differences in the rate of seroconversion after two vaccine doses were observed in patients as compared with the control group of healthy subjects. Age and anticancer treatment class had an independent impact on the antibody titer after the second dose of vaccination. In a subgroup of 171 patients with available data about the third timepoint, patients receiving immunotherapy with immune checkpoint inhibitors seem to have a higher peak of antibodies soon after the second dose (3 weeks after), but a more pronounced decrease at a late timepoint (3 months after). Conclusions: The systemic immunosuppression characterizing cancer patients did not seem to dramatically affect the humoral response to anti-SARS-CoV-2 mRNA vaccines in our population of patients with solid tumors. Further investigation is needed to dissect the interplay between immunotherapy and longitudinal dynamics of humoral response to mRNA vaccines, as well as to analyze the cellular response to mRNA vaccines in cancer patients.

13.
Blood ; 113(1): 18-27, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18809757

ABSTRACT

Eighteen relapsed patients with measurable indolent non-Hodgkin lymphoma (NHL) were vaccinated with dendritic cells (DCs) loaded with killed autologous tumor cells. Six patients had objective clinical responses including 3 continuous complete responses (CRs) and 3 partial responses (PRs), with a median follow up of 50.5 months. Eight patients had stable disease, whereas 4 had progressive disease. Clinical responses were significantly associated with a reduction in CD4(+)CD25(+)FOXP3(+) regulatory T cells, an increase in CD3(-)CD56(dim)CD16(+) natural killer (NK) cells, and maturation of lymphocytes to the effector memory stage in either postvaccination peripheral blood or tumor specimen samples. In partial responding patients, vaccination significantly boosted the IFN-gamma-producing T-cell response to autologous tumor challenge. In one HLA-A*0201(+) patient who achieved CR, IL-4 release by circulating T cells in response to tumor-specific IgH-encoded peptides was also documented. Immunohistochemical analysis of tumor biopsies using biotin-conjugated autologous serum samples revealed a tumor-restricted humoral response only in the postvaccination serum from responding patients. Collectively these results demonstrate that vaccination with tumor-loaded DCs may induce both T- and B-cell responses and produces clinical benefits in indolent NHL patients with measurable disease. This study is registered with the Istituto Superiore di Sanità: http://www.iss.it with protocol number 7578-PRE 21-801.


Subject(s)
Cancer Vaccines/administration & dosage , Dendritic Cells/immunology , Immunotherapy, Adoptive , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Aged , Cancer Vaccines/adverse effects , Cancer Vaccines/standards , Female , Follow-Up Studies , Humans , Immunophenotyping , Killer Cells, Natural/immunology , Lymphoma, B-Cell/diagnostic imaging , Male , Middle Aged , Pilot Projects , Quality Control , Recurrence , T-Lymphocytes, Regulatory/immunology , Tomography, X-Ray Computed , Treatment Outcome
14.
Front Oncol ; 11: 628324, 2021.
Article in English | MEDLINE | ID: mdl-34221958

ABSTRACT

This case report shows, for the first time, a patient experiencing a complete response after one dose of avelumab following extensive disease progression with prior electrochemotherapy (ECT) treatment. We suggest that ECT may help to establish a tumor microenvironment favorable to immunotherapy. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with seldom durable chemotherapy responses. ECT has recently emerged as a potential treatment option for several malignancies, including MCC. Avelumab, an anti-programmed cell death-ligand 1 (PD-L1) monoclonal antibody, became the first approved treatment for patients with metastatic MCC. ECT has been shown to activate the immune response, but it is still unknown how ECT may affect patient's response to subsequent immunotherapy. We report a case of a patient with MCC who presented with a rapidly growing skin nodule of the right cheek and experienced extensive disease progression following surgical debulking and ECT treatment. The patient received a flat dose of 800 mg avelumab intravenously every 2 weeks showing complete tumor regression after only one dose. Immunohistochemical analysis of surgical and post-ECT biopsies collected from the primary lesion revealed tumor expression of programmed cell death protein-1 (PD-1), but not PD-L1. Analysis of the tumor samples also revealed no expression of Merkel cell polyomavirus (MCPyV). Comparison of the biopsies showed a decrease in myeloid and T-cell markers after ECT but an increase in major histocompatibility complex (MHC) class I expression on tumor cells. Additionally, the patient experienced an increase in neutrophil-to-lymphocyte ratio and lactate dehydrogenase values post-ECT, which subsequently decreased with avelumab treatment. As of 30 October 2019, the patient was still receiving avelumab treatment and had an ongoing complete response. In this case report, a patient with PD-L1-negative and MCPyV-negative MCC who had disease progression following ECT experienced complete tumor regression with avelumab treatment, suggesting, for the first time to our knowledge, that ECT may help to establish a tumor microenvironment favorable to immunotherapy via a potential abscopal effect. Tumor-intrinsic PD-1 expression and modulation of MHC class I antigens after ECT may contribute to the clinical efficacy of avelumab in this context.

15.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34127544

ABSTRACT

We previously published the results of a pilot study showing that vaccination with tumor-loaded dendritic cells (DCs) induced both T and B cell response and produced clinical benefit in the absence of toxicity in patients with relapsed, indolent non-Hodgkin lymphoma (iNHL). The purpose of the present short report is to provide a 15-year follow-up of our study and to expand the biomarker analysis previously performed. The long-term follow-up highlighted the absence of particular or delayed toxicity and the benefit of active immunization with DCs loaded with autologous, heat-shocked and UV-C treated tumor cells in relapsed iNHL (5-year and 10-year progression-free survival (PFS) rates: 55.6% and 33.3%, respectively; 10-year overall survival (OS) rate: 83.3%). Female patients experienced a better PFS (p=0.016) and a trend towards a better OS (p=0.185) compared with male patients. Of note, we observed a non-negligible fraction of patients (22%) who experienced a long-lasting complete response. In a targeted gene expression profiling of pre-treatment tumor biopsies in 11 patients with available formalin-fixed, paraffin-embedded tissue, we observed that KIT, ATG12, TNFRSF10C, PBK, ITGA2, GATA3, CLU, NCAM1, SYT17 and LTK were differentially expressed in patients with responder versus non-responder tumors. The characterization of peripheral monocytic cells in a subgroup of 14 patients with available baseline blood samples showed a higher frequency of the subset of CD14++CD16+ cells (intermediate monocytes) in patients with responding tumors. Since in patients with relapsed iNHL the available therapeutic options are often incapable of inducing a long-lasting complete remission and can be sometimes characterized by intolerable toxicity, we think that the encouraging results of our long-term follow-up analysis represent a stimulus to further investigate the role of active vaccination in this specific setting and in earlier lines of therapy and to explore novel combinatorial strategies encompassing other innovative immunotherapy agents, such as immune-checkpoint inhibitors.


Subject(s)
Cancer Vaccines/therapeutic use , Dendritic Cells/transplantation , Immunotherapy/methods , Lymphoma, Non-Hodgkin/therapy , Cancer Vaccines/pharmacology , Female , Follow-Up Studies , Humans , Male , Neoplasm Recurrence, Local , Recurrence , Time Factors
16.
Cancers (Basel) ; 12(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276569

ABSTRACT

Development of strong immune evasion has been traditionally associated with the late stages of solid tumor progression, since advanced cancers are more likely to have reached the third phase of the immunoediting process. However, by integrating a variety of approaches, evidence for active immune escape mechanisms has been found even in the pre-invasive lesions that later progress to the main NSCLC histotypes. Pre-invasive lesions of adenocarcinoma (LUAD) and of squamous cell carcinoma (LUSC) can show impaired antigen presentation, loss of heterozygosity at the Human Leukocyte Antigen (HLA) region, neoantigen silencing, activation of immune checkpoints, altered TH1/TH2 cytokine ratios, and immune contexture evolution. Analysis of large panels of LUAD vs. LUSC, of early stage NSCLC vs. normal lung tissue, of specific molecular subsets of NSCLC, and of distinct regions within the same tumor, indicates that all these processes of immune escape continue to evolve in the invasive stage of NSCLC, are associated with inter- and intra-tumor heterogeneity, and contribute to resistance to therapy by immune checkpoint blockade (ICB). In this review, we will discuss the most recent evidence on immune escape mechanisms developing from the precursor to invasive stage in NSCLC, and the contribution of immune evasion to resistance to ICB in lung cancer.

17.
Cancers (Basel) ; 12(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906302

ABSTRACT

Thyroid carcinoma (TC) comprises several histotypes with different aggressiveness, from well (papillary carcinoma, PTC) to less differentiated forms (poorly differentiated and anaplastic thyroid carcinoma, PDTC and ATC, respectively). Previous reports have suggested a functional role for cancer-associated fibroblasts (CAFs) or senescent TC cells in the progression of PTC. In this study, we investigated the presence of CAFs and senescent cells in proprietary human TCs including PTC, PDTC, and ATC. Screening for the driving lesions BRAFV600E and N/H/KRAS mutations, and gene fusions was also performed to correlate results with tumor genotype. In samples with unidentified drivers, transcriptomic profiles were used to establish a BRAF- or RAS-like molecular subtype based on a gene signature derived from The Cancer Genome Atlas. By using immunohistochemistry, we found co-occurrence of stromal CAFs and senescent TC cells at the tumor invasive front, where deposition of collagen (COL1A1) and expression of lysyl oxidase (LOX) enzyme were also detected, in association with features of local invasion. Concurrent high expression of CAFs and of the senescent TC cells markers, COL1A1 and LOX was confirmed in different TC histotypes in proprietary and public gene sets derived from Gene Expression Omnibus (GEO) repository, and especially in BRAF mutated or BRAF-like tumors. In this study, we show that CAFs and senescent TC cells co-occur in various histotypes of BRAF-driven thyroid tumors and localize at the tumor invasive front.

18.
J Clin Oncol ; 38(14): 1591-1601, 2020 05 10.
Article in English | MEDLINE | ID: mdl-32167862

ABSTRACT

PURPOSE: Thin melanomas (T1; ≤ 1 mm) constitute 70% of newly diagnosed cutaneous melanomas. Regional node metastasis determined by sentinel node biopsy (SNB) is an important prognostic factor for T1 melanoma. However, current melanoma guidelines do not provide clear indications on when to perform SNB in T1 disease and stress an individualized approach to SNB that considers all clinicopathologic risk factors. We aimed to identify determinants of sentinel node (SN) status for incorporation into an externally validated nomogram to better select patients with T1 disease for SNB. PATIENTS AND METHODS: The development cohort comprised 3,666 patients with T1 disease consecutively treated at the Istituto Nazionale Tumori (Milan, Italy) between 2001 and 2018; 4,227 patients with T1 disease treated at 13 other European centers over the same period formed the validation cohort. A random forest procedure was applied to the development data set to select characteristics associated with SN status for inclusion in a multiple binary logistic model from which a nomogram was elaborated. Decision curve analyses assessed the clinical utility of the nomogram. RESULTS: Of patients in the development cohort, 1,635 underwent SNB; 108 patients (6.6%) were SN positive. By univariable analysis, age, growth phase, Breslow thickness, ulceration, mitotic rate, regression, and lymphovascular invasion were significantly associated with SN status. The random forest procedure selected 6 variables (not growth phase) for inclusion in the logistic model and nomogram. The nomogram proved well calibrated and had good discriminative ability in both cohorts. Decision curve analyses revealed the superior net benefit of the nomogram compared with each individual variable included in it as well as with variables suggested by current guidelines. CONCLUSION: We propose the nomogram as a decision aid in all patients with T1 melanoma being considered for SNB.

19.
Cancer Res ; 67(9): 4271-7, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17483339

ABSTRACT

Doxorubicin treatment was found to augment the expression of the extracellular matrix (ECM) protein fibulin-1 in cultured human breast cancer cell lines and in MDA-MB-361 tumors grown in athymic mice. Doxorubicin was also found to augment tumor expression of the fibulin-1-binding proteins fibronectin and laminin-1. Growth of breast cancer cell lines on Matrigel, an ECM extract containing fibulin-1 and laminin-1, resulted in lower levels of doxorubicin-induced apoptosis as compared with controls. Moreover, tumors formed by injection of athymic mice with MDA-MB-361 cells mixed with Matrigel were significantly more doxorubicin resistant and displayed lower levels of apoptosis compared with those that formed in the absence of Matrigel. Monoclonal antibodies against fibulin-1 reversed Matrigel-dependent doxorubicin resistance. Furthermore, small interfering RNA-mediated suppression of fibulin-1 expression in breast cancer cells resulted in a 10-fold increase in doxorubicin sensitivity as compared with control cells. Together, these findings point to a role for fibulin-1 in breast cancer chemoresistance.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Calcium-Binding Proteins/physiology , Doxorubicin/pharmacology , Animals , Breast Neoplasms/pathology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Cell Survival/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , RNA, Small Interfering/genetics , Transfection
20.
Oncogene ; 38(22): 4384-4396, 2019 05.
Article in English | MEDLINE | ID: mdl-30710146

ABSTRACT

Discovery of new actionable targets and functional networks in melanoma is an urgent need as only a fraction of metastatic patients achieves durable clinical benefit by targeted therapy or immunotherapy approaches. Here we show that NFATc2 expression is associated with an EMT-like transcriptional program and with an invasive melanoma phenotype, as shown by analysis of melanoma cell lines at the mRNA and protein levels, interrogation of the TCGA melanoma dataset and characterization of melanoma lesions by immunohistochemistry. Gene silencing or pharmacological inhibition of NFATc2 downregulated EMT-related genes and AXL, and suppressed c-Myc, FOXM1, and EZH2. Targeting of c-Myc suppressed FOXM1 and EZH2, while targeting of FOXM1 suppressed EZH2. Inhibition of c-Myc, or FOXM1, or EZH2 downregulated EMT-related gene expression, upregulated MITF and suppressed migratory and invasive activity of neoplastic cells. Stable silencing of NFATc2 impaired melanoma cell proliferation in vitro and tumor growth in vivo in SCID mice. In NFATc2+ EZH2+ melanoma cell lines pharmacological co-targeting of NFATc2 and EZH2 exerted strong anti-proliferative and pro-apoptotic activity, irrespective of BRAF or NRAS mutations and of BRAF inhibitor resistance. These results provide preclinical evidence for a role of NFATc2 in shaping the EMT-like melanoma phenotype and reveal a targetable vulnerability associated with NFATc2 and EZH2 expression in melanoma cells belonging to different mutational subsets.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Epithelial-Mesenchymal Transition/genetics , Melanoma/genetics , NFATC Transcription Factors/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Female , Forkhead Box Protein M1/genetics , GTP Phosphohydrolases/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing/physiology , Humans , Melanoma/pathology , Mice , Mice, SCID , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-myc/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL