Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Ecol Lett ; 21(4): 525-535, 2018 04.
Article in English | MEDLINE | ID: mdl-29430810

ABSTRACT

The ecological and evolutionary consequences of extreme events are poorly understood. Here, we tested predictions about species persistence and population genomic change in aquatic insects in 14 Colorado mountain streams across a hydrological disturbance gradient caused by a one in 500-year rainfall event. Taxa persistence ranged from 39 to 77% across sites and declined with increasing disturbance in relation to species' resistance and resilience traits. For taxa with mobile larvae and terrestrial adult stages present at the time of the flood, average persistence was 84% compared to 25% for immobile taxa that lacked terrestrial adults. For two of six species analysed, genomic diversity (allelic richness) declined after the event. For one species it greatly expanded, suggesting resilience via re-colonisation from upstream populations. Thus, while resistance and resilience traits can explain species persistence to extreme disturbance, population genomic change varies among species, challenging generalisations about evolutionary responses to extreme events at landscape scales.


Subject(s)
Floods , Genomics , Insecta , Animals , Colorado , Insecta/genetics , Rivers
2.
Ecology ; 102(11): e03503, 2021 11.
Article in English | MEDLINE | ID: mdl-34314030

ABSTRACT

Frameworks exclusively considering functional diversity are gaining popularity, as they complement and extend the information provided by taxonomic diversity metrics, particularly in response to disturbance. Taxonomic diversity should be included in functional diversity frameworks to uncover the functional mechanisms causing species loss following disturbance events. We present and test a predictive framework that considers temporal functional and taxonomic diversity responses along disturbance gradients. Our proposed framework allows us to test different multidimensional metrics of taxonomic diversity that can be directly compared to calculated multidimensional functional diversity metrics. It builds on existing functional diversity-disturbance frameworks both by using a gradient approach and by jointly considering taxonomic and functional diversity. We used previously unpublished stream insect community data collected prior to, and for the two years following, an extreme flood event that occurred in 2013. Using 14 northern Colorado mountain streams, we tested our framework and determined that taxonomic diversity metrics calculated using multidimensional methods resulted in concordance between taxonomic and functional diversity responses. By considering functional and taxonomic diversity together and using a gradient approach, we were able to identify some of the mechanisms driving species losses following this extreme disturbance event.


Subject(s)
Floods , Rivers , Animals , Biodiversity , Colorado , Insecta
SELECTION OF CITATIONS
SEARCH DETAIL