Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
PLoS Biol ; 21(10): e3002341, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37883333

ABSTRACT

There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.


Subject(s)
Antibodies , Bacteriophage T4 , Animals , Mice , Humans , Bacteriophage T4/genetics , Cell Cycle , DNA , Mammals/genetics
2.
Proc Natl Acad Sci U S A ; 120(14): e2217066120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36989298

ABSTRACT

Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.


Subject(s)
Rabies virus , Rabies , Humans , Rabies virus/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence Factors/metabolism , Protein Isoforms/metabolism
3.
Traffic ; 24(3): 146-157, 2023 03.
Article in English | MEDLINE | ID: mdl-36479968

ABSTRACT

The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.


Subject(s)
Hendra Virus , Lyssavirus , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Ribosomal , Lyssavirus/genetics , Lyssavirus/metabolism , Ribosomes/metabolism , Hendra Virus/genetics , Hendra Virus/metabolism , Transcription Factors
4.
PLoS Pathog ; 18(5): e1010533, 2022 05.
Article in English | MEDLINE | ID: mdl-35576230

ABSTRACT

Antagonism of the interferon (IFN)-mediated antiviral state is critical to infection by rabies virus (RABV) and other viruses, and involves interference in the IFN induction and signaling pathways in infected cells, as well as deactivation of the antiviral state in cells previously activated by IFN. The latter is required for viral spread in the host, but the precise mechanisms involved and roles in RABV pathogenesis are poorly defined. Here, we examined the capacity of attenuated and pathogenic strains of RABV that differ only in the IFN-antagonist P protein to overcome an established antiviral state. Importantly, P protein selectively targets IFN-activated phosphorylated STAT1 (pY-STAT1), providing a molecular tool to elucidate specific roles of pY-STAT1. We find that the extended antiviral state is dependent on a low level of pY-STAT1 that appears to persist at a steady state through ongoing phosphorylation/dephosphorylation cycles, following an initial IFN-induced peak. P protein of pathogenic RABV binds and progressively accumulates pY-STAT1 in inactive cytoplasmic complexes, enabling recovery of efficient viral replication over time. Thus, P protein-pY-STAT1 interaction contributes to 'disarming' of the antiviral state. P protein of the attenuated RABV is defective in this respect, such that replication remains suppressed over extended periods in cells pre-activated by IFN. These data provide new insights into the nature of the antiviral state, indicating key roles for residual pY-STAT1 signaling. They also elucidate mechanisms of viral deactivation of antiviral responses, including specialized functions of P protein in selective targeting and accumulation of pY-STAT1.


Subject(s)
Antiviral Agents , Rabies virus , Antiviral Agents/pharmacology , Interferons/metabolism , Phosphorylation , Rabies virus/metabolism , STAT1 Transcription Factor/metabolism , Virus Replication
5.
Traffic ; 22(12): 482-489, 2021 12.
Article in English | MEDLINE | ID: mdl-34622522

ABSTRACT

Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.


Subject(s)
Rabies virus , Cell Nucleus/metabolism , Nuclear Export Signals , Rabies virus/metabolism , Viral Proteins/metabolism , Virulence
6.
J Virol ; 96(9): e0011122, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35404083

ABSTRACT

The rabies virus (RABV) phosphoprotein (P protein) is expressed as several isoforms, which differ in nucleocytoplasmic localization and microtubule (MT) association, mediated by several sequences, including nuclear localization (NLS) and export (NES) sequences. This appears to underpin a functional diversity enabling multiple functions in viral replication and modulation of host biology. Mechanisms regulating trafficking are poorly defined, but phosphorylation by protein kinase C (PKC) in the P protein C-terminal domain (PCTD) regulates nuclear trafficking, mediated by PCTD-localized NLS/NES sequences, indicating that phosphorylation contributes to functional diversity. The molecular mechanism underlying the effects of PKC, and potential roles in regulating other host-cell interactions are unresolved. Here, we assess effects of phosphorylation on the P3 isoform, which differs from longer isoforms through an ability to localize to the nucleus and associate with MTs, which are associated with antagonism of interferon (IFN) signaling. We find that phosphomimetic mutation of the PKC site S210 inhibits nuclear accumulation and MT association/bundling. Structural analysis indicated that phosphomimetic mutation induces no significant structural change to the NLS/NES but results in the side chain of N226 switching its interactions from E228, within the NES, to E210. Intriguingly, N226 is the sole substituted residue between the PCTD of the pathogenic IFN-resistant RABV strain Nishigahara and a derivative attenuated IFN-sensitive strain Ni-CE, inhibiting P3 nuclear localization and MT association. Thus, S210 phosphorylation appears to impact on N226/E228 to regulate P protein localization, with N226 mutation in Ni-CE mimicking a constitutively phosphorylated state resulting in IFN sensitivity and attenuation. IMPORTANCE Rabies virus P protein is a multifunctional protein with critical roles in replication and manipulation of host-cell processes, including subversion of immunity. This functional diversity involves interactions of several P protein isoforms with the cell nucleus and microtubules. Previous studies showed that phosphorylation of the P protein C-terminal domain (PCTD) at S210, near nuclear trafficking sequences, regulates nucleocytoplasmic localization, indicating key roles in functional diversity. The molecular mechanisms of this regulation have remained unknown. Here, we show that phosphomimetic mutation of S210 regulates nuclear localization and MT association. This regulation does not appear to result from disrupted PCTD structure, but rather from a switch of specific side chain interactions of N226. Intriguingly, N226 was previously implicated in P protein nuclear localization/MT association, immune evasion, and RABV pathogenesis, through undefined mechanisms. Our data indicate that the S210-N226 interface is a key regulator of virus-host interactions, which is significant for pathogenesis.


Subject(s)
Molecular Chaperones , Rabies virus , Viral Structural Proteins , Animals , Cell Nucleus/metabolism , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rabies virus/genetics , Rabies virus/metabolism
7.
J Virol ; 96(20): e0139622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36222519

ABSTRACT

Viral hijacking of microtubule (MT)-dependent transport is well understood, but several viruses also express discrete MT-associated proteins (vMAPs), potentially to modulate MT-dependent processes in the host cell. Specific roles for vMAP-MT interactions include subversion of antiviral responses by P3, an isoform of the P protein of rabies virus (RABV; genus Lyssavirus), which mediates MT-dependent antagonism of interferon (IFN)-dependent signal transducers and activators of transcription 1 (STAT1) signaling. P3 also undergoes nucleocytoplasmic trafficking and inhibits STAT1-DNA binding, indicative of intranuclear roles in a multipronged antagonistic strategy. MT association/STAT1 antagonist functions of P3 correlate with pathogenesis, indicating potential as therapeutic targets. However, key questions remain, including whether other P protein isoforms interact with MTs, the relationship of these interactions with pathogenesis, and the extent of conservation of P3-MT interactions between diverse pathogenic lyssaviruses. Using super-resolution microscopy, live-cell imaging, and immune signaling analyses, we find that multiple P protein isoforms associate with MTs and that association correlates with pathogenesis. Furthermore, P3 proteins from different lyssaviruses exhibit variation in intracellular localization phenotypes that are associated with STAT1 antagonist function, whereby P3-MT association is conserved among lyssaviruses of phylogroup I but not phylogroup II, while nucleocytoplasmic localization varies between P3 proteins of the same phylogroup within both phylogroup I and II. Nevertheless, the divergent P3 proteins retain significant IFN antagonist function, indicative of adaptation to favor different inhibitory mechanisms, with MT interaction important to phylogroup I viruses. IMPORTANCE Lyssaviruses, including rabies virus, cause rabies, a progressive encephalomyelitis that is almost invariably fatal. There are no effective antivirals for symptomatic infection, and effective application of current vaccines is limited in areas of endemicity, such that rabies causes ~59,000 deaths per year. Viral subversion of host cell functions, including antiviral immunity, is critical to disease, and isoforms of the lyssavirus P protein are central to the virus-host interface underpinning immune evasion. Here, we show that specific cellular interactions of P protein isoforms involved in immune evasion vary significantly between different lyssaviruses, indicative of distinct strategies to evade immune responses. These findings highlight the diversity of the virus-host interface, an important consideration in the development of pan-lyssavirus therapeutic approaches.


Subject(s)
Lyssavirus , Rabies Vaccines , Rabies virus , Rabies , Humans , Lyssavirus/genetics , Interferons/metabolism , Rabies virus/genetics , Antiviral Agents/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , DNA/metabolism
8.
PLoS Pathog ; 17(6): e1009636, 2021 06.
Article in English | MEDLINE | ID: mdl-34166464

ABSTRACT

Many viruses target signal transducers and activators of transcription (STAT) 1 and 2 to antagonise antiviral interferon signalling, but targeting of signalling by other STATs/cytokines, including STAT3/interleukin 6 that regulate processes important to Ebola virus (EBOV) haemorrhagic fever, is poorly defined. We report that EBOV potently inhibits STAT3 responses to interleukin-6 family cytokines, and that this is mediated by the interferon-antagonist VP24. Mechanistic analysis indicates that VP24 effects a unique strategy combining distinct karyopherin-dependent and karyopherin-independent mechanisms to antagonise STAT3-STAT1 heterodimers and STAT3 homodimers, respectively. This appears to reflect distinct mechanisms of nuclear trafficking of the STAT3 complexes, revealed for the first time by our analysis of VP24 function. These findings are consistent with major roles for global inhibition of STAT3 signalling in EBOV infection, and provide new insights into the molecular mechanisms of STAT3 nuclear trafficking, significant to pathogen-host interactions, cell physiology and pathologies such as cancer.


Subject(s)
Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/physiology , Viral Proteins/metabolism , Animals , Chlorocebus aethiops , Ebolavirus , HEK293 Cells , Humans , Vero Cells
9.
PLoS Pathog ; 17(7): e1009729, 2021 07.
Article in English | MEDLINE | ID: mdl-34237115

ABSTRACT

Rabies virus phosphoprotein (P protein) is a multifunctional protein that plays key roles in replication as the polymerase cofactor that binds to the complex of viral genomic RNA and the nucleoprotein (N protein), and in evading the innate immune response by binding to STAT transcription factors. These interactions are mediated by the C-terminal domain of P (PCTD). The colocation of these binding sites in the small globular PCTD raises the question of how these interactions underlying replication and immune evasion, central to viral infection, are coordinated and, potentially, coregulated. While direct data on the binding interface of the PCTD for STAT1 is available, the lack of direct structural data on the sites that bind N protein limits our understanding of this interaction hub. The PCTD was proposed to bind via two sites to a flexible loop of N protein (Npep) that is not visible in crystal structures, but no direct analysis of this interaction has been reported. Here we use Nuclear Magnetic Resonance, and molecular modelling to show N protein residues, Leu381, Asp383, Asp384 and phosphor-Ser389, are likely to bind to a 'positive patch' of the PCTD formed by Lys211, Lys214 and Arg260. Furthermore, in contrast to previous predictions we identify a single site of interaction on the PCTD by this Npep. Intriguingly, this site is proximal to the defined STAT1 binding site that includes Ile201 to Phe209. However, cell-based assays indicate that STAT1 and N protein do not compete for P protein. Thus, it appears that interactions critical to replication and immune evasion can occur simultaneously with the same molecules of P protein so that the binding of P protein to activated STAT1 can potentially occur without interrupting interactions involved in replication. These data suggest that replication complexes might be directly involved in STAT1 antagonism.


Subject(s)
Immune Evasion/physiology , Molecular Chaperones/metabolism , Rabies virus/metabolism , Rabies/virology , Viral Structural Proteins/metabolism , Virus Replication/physiology , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , Nucleocapsid Proteins/metabolism , Rabies/metabolism , STAT1 Transcription Factor/metabolism
11.
PLoS Pathog ; 17(8): e1009800, 2021 08.
Article in English | MEDLINE | ID: mdl-34437657

ABSTRACT

Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNß production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNß-promoter activity, whereas all six genes induced a collapse in IFNß mRNA levels, corresponding with suppressed IFNß protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.


Subject(s)
Interferon-beta/metabolism , SARS-CoV-2/immunology , Viral Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Chlorocebus aethiops , Eukaryotic Initiation Factor-2/metabolism , HEK293 Cells , Humans , Interferon-beta/genetics , Interferon-beta/pharmacology , SARS-CoV-2/drug effects , STAT1 Transcription Factor/metabolism , Vero Cells , Viral Proteins/genetics
12.
PLoS Pathog ; 16(9): e1008767, 2020 09.
Article in English | MEDLINE | ID: mdl-32903273

ABSTRACT

Many viruses target signal transducer and activator of transcription (STAT) 1 to antagonise antiviral interferon signalling, but targeting of STAT3, a pleiotropic molecule that mediates signalling by diverse cytokines, is poorly understood. Here, using lyssavirus infection, quantitative live cell imaging, innate immune signalling and protein interaction assays, and complementation/depletion of STAT expression, we show that STAT3 antagonism is conserved among P-proteins of diverse pathogenic lyssaviruses and correlates with pathogenesis. Importantly, P-protein targeting of STAT3 involves a highly selective mechanism whereby P-protein antagonises cytokine-activated STAT3-STAT1 heterodimers, but not STAT3 homodimers. RT-qPCR and reporter gene assays indicate that this results in specific modulation of interleukin-6-dependent pathways, effecting differential antagonism of target genes. These data provide novel insights into mechanisms by which viruses can modulate cellular function to support infection through discriminatory targeting of immune signalling complexes. The findings also highlight the potential application of selective interferon-antagonists as tools to delineate signalling by particular STAT complexes, significant not only to pathogen-host interactions but also cell physiology, development and cancer.


Subject(s)
Cytokines/metabolism , Gene Expression Regulation , Lyssavirus/immunology , Rhabdoviridae Infections/immunology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Viral Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Interleukin-6/metabolism , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/virology , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/genetics , Trans-Activators , Viral Proteins/genetics
13.
BMC Biol ; 19(1): 260, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34895240

ABSTRACT

BACKGROUND: The integrity of microtubule filament networks is essential for the roles in diverse cellular functions, and disruption of its structure or dynamics has been explored as a therapeutic approach to tackle diseases such as cancer. Microtubule-interacting drugs, sometimes referred to as antimitotics, are used in cancer therapy to target and disrupt microtubules. However, due to associated side effects on healthy cells, there is a need to develop safer drug regimens that still retain clinical efficacy. Currently, many questions remain open regarding the extent of effects on cellular physiology of microtubule-interacting drugs at clinically relevant and low doses. Here, we use super-resolution microscopies (single-molecule localization and optical fluctuation based) to reveal the initial microtubule dysfunctions caused by nanomolar concentrations of colcemid. RESULTS: We identify previously undetected microtubule (MT) damage caused by clinically relevant doses of colcemid. Short exposure to 30-80 nM colcemid results in aberrant microtubule curvature, with a trend of increased curvature associated to increased doses, and curvatures greater than 2 rad/µm, a value associated with MT breakage. Microtubule fragmentation was detected upon treatment with ≥ 100 nM colcemid. Remarkably, lower doses (< 20 nM after 5 h) led to subtle but significant microtubule architecture remodelling characterized by increased curvature and suppression of microtubule dynamics. CONCLUSIONS: Our results support the emerging hypothesis that microtubule-interacting drugs induce non-mitotic effects in cells, and establish a multi-modal imaging assay for detecting and measuring nanoscale microtubule dysfunction. The sub-diffraction visualization of these less severe precursor perturbations compared to the established antimitotic effects of microtubule-interacting drugs offers potential for improved understanding and design of anticancer agents.


Subject(s)
Cytoskeleton , Microtubules , Demecolcine/pharmacology , Microscopy, Fluorescence
14.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32847860

ABSTRACT

Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.


Subject(s)
STAT Transcription Factors/metabolism , Signal Transduction/physiology , Viruses/metabolism , Cytokines , Gene Expression , Host-Pathogen Interactions , Immune Evasion , STAT Transcription Factors/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , STAT4 Transcription Factor , STAT6 Transcription Factor , Viruses/genetics
15.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: mdl-32581091

ABSTRACT

Measles virus (MeV) is a highly immunotropic and contagious pathogen that can even diminish preexisting antibodies and remains a major cause of childhood morbidity and mortality worldwide despite the availability of effective vaccines. MeV is one of the most extensively studied viruses with respect to the mechanisms of JAK-STAT antagonism. Of the three proteins translated from the MeV P gene, P and V are essential for inactivation of this pathway. However, the lack of data from direct analyses of the underlying interactions means that the detailed molecular mechanism of antagonism remains unresolved. Here, we prepared recombinant MeV V protein, which is responsible for human JAK-STAT antagonism, and a panel of variants, enabling the biophysical characterization of V protein, including direct V/STAT1 and V/STAT2 interaction assays. Unambiguous direct interactions between the host and viral factors, in the absence of other factors such as Jak1 or Tyk2, were observed, and the dissociation constants were quantified for the first time. Our data indicate that interactions between the C-terminal region of V and STAT2 is 1 order of magnitude stronger than that of the N-terminal region of V and STAT1. We also clarified that these interactions are completely independent of each other. Moreover, results of size exclusion chromatography demonstrated that addition of MeV-V displaces STAT2-core, a rigid region of STAT2 lacking the N- and C-terminal domains, from preformed complexes of STAT2-core/IRF-associated domain (IRF9). These results provide a novel model whereby MeV-V can not only inhibit the STAT2/IRF9 interaction but also disrupt preassembled interferon-stimulated gene factor 3.IMPORTANCE To evade host immunity, many pathogenic viruses inactivate host Janus kinase signal transducer and activator of transcription (STAT) signaling pathways using diverse strategies. Measles virus utilizes P and V proteins to counteract this signaling pathway. Data derived largely from cell-based assays have indicated several amino acid residues of P and V proteins as important. However, biophysical properties of V protein or its direct interaction with STAT molecules using purified proteins have not been studied. We have developed novel molecular tools enabling us to identify a novel molecular mechanism for immune evasion whereby V protein disrupts critical immune complexes, providing a clear strategy by which measles virus can suppress interferon-mediated antiviral gene expression.


Subject(s)
Interferon-Stimulated Gene Factor 3, gamma Subunit/chemistry , Measles virus/metabolism , Phosphoproteins/chemistry , STAT2 Transcription Factor/chemistry , Viral Proteins/chemistry , Binding Sites , Gene Expression , Humans , Immune Evasion , Immunity, Innate , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Janus Kinases/metabolism , Measles virus/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , STAT1 Transcription Factor/chemistry , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Signal Transduction , Viral Proteins/genetics , Viral Proteins/metabolism , Zinc Fingers
16.
Biochem Biophys Res Commun ; 529(2): 507-512, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32703459

ABSTRACT

Lyssavirus P protein is a multifunctional protein that interacts with numerous host-cell proteins. The C-terminal domain (CTD) of P is important for inhibition of JAK-STAT signaling enabling the virus to evade host immunity. Several regions on the surface of rabies virus P are reported to interact with host factors. Among them, an extended, discrete hydrophobic patch of P CTD is notable. Although structures of P CTD of two strains of rabies virus, and of mokola virus have been solved, the structure of P CTD for Duvenhage virus, which is functionally divergent from these species for immune evasion function, is not known. Here, we analyze the structures of P CTD of Duvenhage and of a distinct rabies virus strain to gain further insight on the nature and potential function of the hydrophobic surface. Molecular contacts in crystals suggest that the hydrophobic patch is important to intermolecular interactions with other proteins, which differ between the lyssavirus species.


Subject(s)
Lyssavirus/chemistry , Rhabdoviridae Infections/virology , Viral Proteins/chemistry , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Conformation , Protein Domains
17.
J Gen Virol ; 98(4): 563-576, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28056216

ABSTRACT

Viruses of the genus Henipavirus of the family Paramyxoviridae are zoonotic pathogens, which have emerged in Southeast Asia, Australia and Africa. Nipah virus (NiV) and Hendra virus are highly virulent pathogens transmitted from bats to animals and humans, while the henipavirus Cedar virus seems to be non-pathogenic in infection studies. The full replication cycle of the Paramyxoviridae occurs in the host cell's cytoplasm, where viral assembly is orchestrated by the matrix (M) protein. Unexpectedly, the NiV-M protein traffics through the nucleus as an essential step to engage the plasma membrane in preparation for viral budding/release. Comparative studies were performed to assess whether M protein nuclear localization is a common feature of the henipaviruses, including the recently sequenced (although not yet isolated) Ghanaian bat henipavirus (Kumasi virus, GH-M74a virus) and Mojiang virus. Live-cell confocal microscopy revealed that nuclear translocation of GFP-fused M protein is conserved between henipaviruses in both human- and bat-derived cell lines. However, the efficiency of M protein nuclear localization and virus-like particle budding competency varied. Additionally, Cedar virus-, Kumasi virus- and Mojiang virus-M proteins were mutated in a bipartite nuclear localization signal, indicating that a key lysine residue is essential for nuclear import, export and induction of budding events, as previously reported for NiV-M. The results of this study suggest that the M proteins of henipaviruses may utilize a similar nucleocytoplasmic trafficking pathway as an essential step during viral replication in both humans and bats.


Subject(s)
Active Transport, Cell Nucleus , Henipavirus/genetics , Henipavirus/physiology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Animals , Henipavirus/isolation & purification , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Nuclear Localization Signals , Protein Transport , Virosomes/genetics , Virosomes/metabolism
18.
J Gen Virol ; 97(10): 2463-2481, 2016 10.
Article in English | MEDLINE | ID: mdl-27498841

ABSTRACT

Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.


Subject(s)
Cell Nucleus/virology , Cytoplasm/virology , Paramyxoviridae Infections/virology , Paramyxovirinae/physiology , Animals , Humans , Paramyxovirinae/genetics , Virus Assembly
19.
J Gen Virol ; 97(3): 581-592, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26703878

ABSTRACT

IFN-antagonist function is a major determinant of pathogenicity and cross-species infection by viruses, but remains poorly defined for many potentially zoonotic viruses resident in animal species. The paramyxovirus family contains several zoonotic viruses, including highly pathogenic viruses such as Nipah virus and Hendra virus, and an increasing number of largely uncharacterized animal viruses. Here, we report the characterization of IFN antagonism by the rodent viruses J virus (JPV) and Beilong virus (BeiPV) of the proposed genus Jeilongvirus of the paramyxoviruses. Infection of cells by JPV and BeiPV was found to inhibit IFN-activated nuclear translocation of signal transducer and activator of transcription 1 (STAT1). However, in contrast to most other paramyxoviruses, the JPV and BeiPV V proteins did not interact with or inhibit signalling by STAT1 or STAT2, suggesting that JPV/BeiPV use an atypical V protein-independent strategy to target STATs, consistent with their inclusion in a separate genus. Nevertheless, the V proteins of both viruses interacted with melanoma differentiation-associated protein 5 (MDA5) and robustly inhibited MDA5-dependent activation of the IFN-ß promoter. This supports a growing body of evidence that MDA5 is a universal target of paramyxovirus V proteins, such that the V-MDA5 interaction represents a potential target for broad-spectrum antiviral approaches.


Subject(s)
Immune Evasion , Paramyxoviridae Infections/immunology , Paramyxovirinae/immunology , Viral Proteins/immunology , Animals , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/immunology , HEK293 Cells , Humans , Interferon-Induced Helicase, IFIH1 , Interferon-alpha/genetics , Interferon-alpha/immunology , Paramyxoviridae Infections/genetics , Paramyxoviridae Infections/virology , Paramyxovirinae/classification , Paramyxovirinae/genetics , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/immunology , Signal Transduction , Viral Proteins/genetics
20.
Biochem Biophys Res Commun ; 479(3): 429-433, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27622322

ABSTRACT

Paramyxoviruses replicate in the cytoplasm with no obvious requirement to interact with the nucleus. Nevertheless, the W protein of the highly lethal bat-borne paramyxovirus Nipah virus (NiV) is known to undergo specific targeting to the nucleus, mediated by a single nuclear localisation signal (NLS) within the C-terminal domain. Here, we report for the first time that additional sites modulate nucleocytoplasmic localisation of W. We show that the N-terminal domain interacts with importin α1 and contributes to nuclear accumulation of W, indicative of a novel N-terminal NLS. We also find that W undergoes exportin-1 mediated nuclear export, dependent on a leucine at position 174. Together, these data enable significant revision of the generally accepted model of W trafficking, with implications for understanding of the mechanisms of NiV immune evasion.


Subject(s)
Cell Nucleus/metabolism , Karyopherins/metabolism , Nipah Virus , Receptors, Cytoplasmic and Nuclear/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Chlorocebus aethiops , Cytoplasm/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Leucine/chemistry , Nuclear Localization Signals/metabolism , Phosphorylation , Protein Domains , Signal Transduction , Vero Cells , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL