Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 618(7967): 1072-1077, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37196676

ABSTRACT

Plasma membrane rupture (PMR) in dying cells undergoing pyroptosis or apoptosis requires the cell-surface protein NINJ11. PMR releases pro-inflammatory cytoplasmic molecules, collectively called damage-associated molecular patterns (DAMPs), that activate immune cells. Therefore, inhibiting NINJ1 and PMR may limit the inflammation that is associated with excessive cell death. Here we describe an anti-NINJ1 monoclonal antibody that specifically targets mouse NINJ1 and blocks oligomerization of NINJ1, preventing PMR. Electron microscopy studies showed that this antibody prevents NINJ1 from forming oligomeric filaments. In mice, inhibition of NINJ1 or Ninj1 deficiency ameliorated hepatocellular PMR induced with TNF plus D-galactosamine, concanavalin A, Jo2 anti-Fas agonist antibody or ischaemia-reperfusion injury. Accordingly, serum levels of lactate dehydrogenase, the liver enzymes alanine aminotransaminase and aspartate aminotransferase, and the DAMPs interleukin 18 and HMGB1 were reduced. Moreover, in the liver ischaemia-reperfusion injury model, there was an attendant reduction in neutrophil infiltration. These data indicate that NINJ1 mediates PMR and inflammation in diseases driven by aberrant hepatocellular death.


Subject(s)
Antibodies, Monoclonal , Cell Membrane , Inflammation , Liver , Nerve Growth Factors , Reperfusion Injury , Animals , Mice , Alanine Transaminase , Alarmins , Antibodies, Monoclonal/immunology , Aspartate Aminotransferases , Cell Adhesion Molecules, Neuronal/antagonists & inhibitors , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/immunology , Cell Adhesion Molecules, Neuronal/ultrastructure , Cell Death , Cell Membrane/pathology , Cell Membrane/ultrastructure , Concanavalin A , Galactosamine , Hepatocytes/pathology , Hepatocytes/ultrastructure , Inflammation/pathology , Lactate Dehydrogenases , Liver/pathology , Microscopy, Electron , Nerve Growth Factors/antagonists & inhibitors , Nerve Growth Factors/deficiency , Nerve Growth Factors/immunology , Nerve Growth Factors/ultrastructure , Neutrophil Infiltration , Reperfusion Injury/pathology
2.
Anticancer Res ; 36(4): 1489-96, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27069124

ABSTRACT

BACKGROUND/AIM: Recently, anti-tumourigenic effects of all-trans-retinoic-acid (ATRA) on glioblastoma stem cells were demonstrated. Therefore we investigated if these beneficial effects could be enhanced by co-medication with epigenetic drugs such as the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) or the DNA-methyltransferase inhibitor 5-aza-2'deoxycytidine (5-AZA). MATERIALS AND METHODS: Glioma stem cell xenografts were treated for 42 days with ATRA plus SAHA or ATRA plus 5-AZA or the correspondent monotherapies. Tumour sizes, histological features, proliferation and apoptosis rates were assessed. RESULTS: Neither SAHA nor 5-AZA were able to enhance the anti-tumourigenic effect of ATRA. Instead, tumours became more aggressive. Combination of ATRA plus 5-AZA increased tumour size (p<0.05) and induced more frequent and larger necroses (p<0.05) and tumours were more invasive (p<0.05) in comparison to controls. A similar trend was observed for the combination of ATRA plus SAHA. CONCLUSION: Combining ATRA with epigenetic drug therapies led to the unwanted opposite effect and increased aggressiveness of glioma xenografts, arguing against future clinical applications of such combinations.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Brain Neoplasms/drug therapy , Glioma/drug therapy , Tretinoin/adverse effects , Animals , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/adverse effects , Azacitidine/therapeutic use , Brain Neoplasms/pathology , Cell Line, Tumor , Epigenomics , Female , Glioma/pathology , Histone Deacetylase Inhibitors/adverse effects , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydroxamic Acids/adverse effects , Hydroxamic Acids/therapeutic use , Mice, Inbred NOD , Mice, SCID , Tretinoin/therapeutic use , Tumor Burden/drug effects , Vorinostat , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL