Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Rev Sci Instrum ; 87(10): 105122, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802754

ABSTRACT

A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoring the oxidation of metallic zirconium during exposure to steam at 350 °C. The in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during the early stages of corrosion, which can provide a better understanding of the oxidation process.

2.
Microsc Res Tech ; 72(3): 182-6, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19189372

ABSTRACT

The intermediate voltage electron microscope-tandem user facility in the Electron Microscopy Center at Argonne National Laboratory is described. The primary purpose of this facility is electron microscopy with in situ ion irradiation at controlled sample temperatures. To illustrate its capabilities and advantages a few results of two outside user projects are presented. The motion of dislocation loops formed during ion irradiation is illustrated in video data that reveals a striking reduction of motion in Fe-8%Cr over that in pure Fe. The development of extended defect structure is then shown to depend on this motion and the influence of nearby surfaces in the transmission electron microscopy thin samples. In a second project, the damage microstructure is followed to high dose (200 dpa) in an oxide dispersion strengthened ferritic alloy at 500 degrees C, and found to be qualitatively similar to that observed in the same alloy neutron irradiated at 420 degrees C.


Subject(s)
Ferric Compounds/radiation effects , Microscopy, Electron, Transmission , Alloys/chemistry , Alloys/radiation effects , Ferric Compounds/chemistry , Microscopy, Electron, Transmission/instrumentation , Nanostructures/chemistry , Nanostructures/radiation effects , Nanostructures/ultrastructure , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL