Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Toxicol Appl Pharmacol ; 426: 115636, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34214573

ABSTRACT

Paraquat (PQ), an herbicide widely used in agriculture, is considered a highly toxic compound. In hepatocytes, P-glycoprotein (P-gp/Abcb1) is a canalicular transporter involved in PQ extrusion from the cell. Previously, we demonstrated that genistein (GNT) induces P-gp in rat liver. In this study, the protective role of GNT pretreatment towards hepatic damage in a model of acute intoxication with PQ in rats, was investigated. Wistar rats were randomized in 4 groups: Control, GNT (5 mg/kg/day sc, 4 days), PQ (50 mg/kg/day ip, last day) and GNT+ PQ. Hepatic lipoperoxidation (LPO) was evaluated by the thiobarbituric acid reactive substances method. Hepatic levels of 4-hydroxynonenal protein adducts (4-HNEp-add) and glutathione-S-transferase alpha (GSTα) protein expression were evaluated by Western blotting. Hepatic glutathione levels and plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Biliary excretion of PQ was studied in vivo and in isolated perfused liver. PQ was quantified by HPLC. PQ significantly increased AST and ALT activities, malondialdehyde and 4-HNEp-add levels, whereby pretreatment with GNT ameliorated this effect. PQ biliary excretion remained unchanged after treatments in both experimental models. Hepatic GSTα expression was augmented in GNT group. GNT pretreatment increased hepatic glutathione levels in PQ + GNT group. These results agree with the lower content of 4-HNEp-adds in GNT + PQ group respect to PQ group. Unexpectedly, increased activity of P-gp did not enhance PQ biliary excretion. Thus, GNT protective mechanism is likely through the induction of GSTα which results in increased 4-HNE metabolism before formation of protein adducts.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Genistein/therapeutic use , Protective Agents/therapeutic use , Alanine Transaminase/blood , Aldehydes/metabolism , Animals , Aspartate Aminotransferases/blood , Bile/metabolism , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/metabolism , Genistein/pharmacology , Glutathione/metabolism , Glutathione Transferase/metabolism , Herbicides , Liver/drug effects , Liver/metabolism , Male , Paraquat , Protective Agents/pharmacology , Rats, Wistar
2.
Pharmacol Res ; 163: 105251, 2021 01.
Article in English | MEDLINE | ID: mdl-33065282

ABSTRACT

The extensive intestinal surface offers an advantage regarding nutrient, ion and water absorptive capacity but also brings along a high exposition to xenobiotics, including drugs of therapeutic use and food contaminants. After absorption of these compounds by the enterocytes, apical ABC transporters play a key role in secreting them back to the intestinal lumen, hence acting as a transcellular barrier. Rapid and reversible modulation of their activity is a subject of increasing interest for pharmacologists. On the one hand, a decrease in transporter activity may result in increased absorption of therapeutic agents given orally. On the other hand, an increase in transporter activity would decrease their absorption and therapeutic efficacy. Although of less relevance, apical ABC transporters also contribute to disposition of drugs systemically administered. This review article summarizes the present knowledge on the mechanisms aimed to rapidly regulate the activity of the main apical ABC transporters of the gut: multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). Regulation of these mechanisms by drugs, drug delivery systems, drug excipients and nutritional components are particularly considered. This information could provide the basis for controlled regulation of bioavailability of therapeutic agents and at the same time would help to prevent potential drug-drug interactions.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Gastrointestinal Tract/metabolism , Pharmaceutical Preparations/metabolism , Animals , Biological Availability , Humans
3.
Arch Toxicol ; 92(2): 777-788, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29052767

ABSTRACT

Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17ß-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bucladesine/pharmacology , Estradiol/analogs & derivatives , Intestinal Mucosa/drug effects , Multidrug Resistance-Associated Proteins/metabolism , Animals , Caco-2 Cells , Cell Membrane/metabolism , Cyclic AMP , Estradiol/pharmacology , Humans , Intestinal Mucosa/metabolism , Male , Multidrug Resistance-Associated Protein 2 , Rats , Rats, Wistar
4.
Toxicol Appl Pharmacol ; 303: 45-57, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27155371

ABSTRACT

The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs.


Subject(s)
Multidrug Resistance-Associated Proteins/metabolism , Xenobiotics/pharmacology , Animals , Constitutive Androstane Receptor , Humans , Intestinal Mucosa/metabolism , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/chemistry
5.
Toxicol Appl Pharmacol ; 287(2): 178-190, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26049102

ABSTRACT

The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 µM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Glutathione Transferase/biosynthesis , Multidrug Resistance-Associated Proteins/biosynthesis , CREB-Binding Protein/metabolism , Caco-2 Cells , Colforsin/pharmacology , Dinitrochlorobenzene/pharmacology , Dose-Response Relationship, Drug , Humans , Multidrug Resistance-Associated Protein 2 , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcription Factor AP-1/metabolism
6.
Nutrition ; 111: 112050, 2023 07.
Article in English | MEDLINE | ID: mdl-37172454

ABSTRACT

OBJECTIVES: Multidrug resistance transporter 1 (Mdr-1) is a relevant component of the intestinal transcellular barrier that decreases absorption of oral drugs, thus modulating their bioavailability. Obese patients with metabolic disorders take medications that are subjected to intestinal metabolism and the Mdr-1-dependent barrier. This study evaluated the effect of a high-fat diet (HFD; 40% fat for 16 wk) on Mdr-1 expression and transport activity in C57BL/6 (C57) male mice. Comparable studies were performed in tumor necrosis factor α (TNF-α) receptor 1 knockout mice (R1KO) to delineate a possible role of TNF-α signaling. METHODS: mRNA expression was evaluated by real-time polymerase chain reaction and protein levels by western blotting and immunohistochemistry. Mdr-1 activity was assessed using the everted intestinal sac model, with rhodamine 123 as the substrate. Statistical comparisons were made using the Student t test or one-way analysis of variance followed by the post hoc Tukey test. RESULTS: Mdr-1 protein, as well as its corresponding Mdr1a and Mdr1b mRNA, was decreased in C57-HFD mice compared with controls. Immunohistochemical studies confirmed downregulation of Mdr-1 in situ. These results correlated with a 48% decrease in the basolateral to apical transport of rhodamine 123. In contrast, R1KO-HFD modified neither intestinal Mdr-1 mRNA nor its protein expression or activity. In addition, C57-HFD showed elevated intestinal TNF-α mRNA and protein (enzyme-linked immunosorbent assay) levels, whereas R1KO-HFD was undetectable or had a lower increase, respectively. CONCLUSIONS: This study demonstrated an impairment of the Mdr-1 intestinal barrier function induced by HFD as a consequence of downregulation of both Mdr-1 gene homologues, resulting in impaired Mdr-1 protein expression. Inflammatory response mediated by TNF-α receptor 1 signaling was likely involved.


Subject(s)
Diet, High-Fat , Tumor Necrosis Factor-alpha , Mice , Animals , Male , Tumor Necrosis Factor-alpha/metabolism , Mice, Obese , Rhodamine 123 , Down-Regulation , Mice, Inbred C57BL , RNA, Messenger , Drug Resistance, Multiple
7.
Eur J Pharmacol ; 892: 173736, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33220273

ABSTRACT

Multidrug resistance (MDR) counteracts the efficiency of sorafenib, an important first-line therapy for hepatocellular carcinoma (HCC). Sirtuins (SIRTs) 1 and 2 are associated with tumor progression and MDR. We treated 2D and 3D cultures (which mimic the features of in vivo tumors) from HCC cells with sorafenib alone or in the presence of SIRTs 1 and 2 inhibitors (cambinol or EX-527; combined treatments). Cultures subjected to combined treatments showed a greater fall in cellular viability, proliferation (PCNA, cyclin D1 and Ki-67 expression and cell cycle analysis), migration and invasion when compared with cultures treated only with sorafenib. Similarly, combined treatments produced more apoptosis (annexin V/PI, caspase-3/7 activity) than sorafenib alone. Since cell cycle dysregulation and apoptotic blockage are reported mechanisms of MDR, the modulation found in PCNA, cyclin D1, Ki-67 and caspase-3/7 proteins by cambinol and EX-527 are probably playing a role in enhancing the sensitivity of HCC cell lines to sorafenib. EX-527 reduced MRP3 and BCRP expression in sorafenib-treated HCC cells. Since ABC transporters contribute to MDR, MRP3 and BCRP could be also influencing in the response of HCC cells to sorafenib. Overall, 2D and 3D cultures behave similarly except that 3D cultures were less sensitive to treatments, reinforcing the clinical relevance of the current study. Findings presented in this manuscript support a potential application for SIRTs 1 and 2 inhibitors since we demonstrated that these compounds enhance the inhibitory effect of sorafenib upon treatment of hepatocellular carcinoma cells lines.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carbazoles/pharmacology , Carcinoma, Hepatocellular/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Naphthalenes/pharmacology , Pyrimidinones/pharmacology , Sirtuin 1/antagonists & inhibitors , Sirtuin 2/antagonists & inhibitors , Sorafenib/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Signal Transduction , Sirtuin 1/metabolism , Sirtuin 2/metabolism , Spheroids, Cellular
8.
Toxicology ; 460: 152873, 2021 08.
Article in English | MEDLINE | ID: mdl-34303734

ABSTRACT

Oxidative stress (OS) is a key factor in the development of gastrointestinal disorders, in which the intestinal barrier is altered. However, the Multidrug resistance-associated protein 2 (Mrp2) status, an essential component of the intestinal transcellular barrier exhibiting pharmaco-toxicological relevance by limiting the orally ingested toxicants and drugs absorption, has not been investigated. We here evaluated the short-term effect of OS on Mrp2 by treatment of isolated rat intestinal sacs with tert-butyl hydroperoxide (TBH) for 30 min. OS induction by TBH (250 and 500 µM) was confirmed by increased lipid peroxidation end products, decreased reduced glutathione (GSH) content and altered antioxidant enzyme activities. Under this condition, assessment of Mrp2 distribution between brush border (BBM) and intracellular (IM) membrane fractions, showed that Mrp2 protein decreased in BBM and increased in IM, consistent with an internalization process. This was associated with decreased efflux activity and, consequently, impaired barrier function. Subsequent incubation with N-Acetyl-L-Cysteine (NAC, 1 mM) reestablished GSH content and reverted concomitantly the alteration in Mrp2 localization and function induced by TBH. Cotreatment with a specific inhibitor of classic calcium-dependent Protein Kinase C (cPKC) implicated this kinase in TBH-effects. In conclusion, we demonstrated a negative posttranslational regulation of rat intestinal Mrp2 after short-term exposition to OS, a process likely mediated by cPKC and dependent on intracellular GSH content. The concomitant impairment of the Mrp2 barrier function may have implications in xenobiotic absorption and toxicity in a variety of human diseases linked to OS, with notable consequences on the toxicity/safety of therapeutic agents.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Intestinal Mucosa/metabolism , Jejunum/metabolism , Microvilli/metabolism , Oxidative Stress/physiology , Protein Processing, Post-Translational/physiology , Animals , Dose-Response Relationship, Drug , Intestinal Mucosa/drug effects , Jejunum/drug effects , Male , Microvilli/drug effects , Oxidative Stress/drug effects , Protein Processing, Post-Translational/drug effects , Rats , Rats, Wistar , tert-Butylhydroperoxide/toxicity
9.
Toxicology ; 441: 152527, 2020 08.
Article in English | MEDLINE | ID: mdl-32553669

ABSTRACT

Multidrug resistance-associated protein 2 (Mrp2), expressed at the brush border membrane (BBM) of the enterocyte, is an ABC transporter with relevant intestinal barrier function. Its toxicological relevance lies in preventing absorption and tissue accumulation of dietary contaminants, drugs, and potentially harmful endogenous metabolites. Expression and activity of intestinal Mrp2 is downregulated in LPS-induced endotoxemia. In addition, confocal microscopy studies demonstrated internalization of the transporter to endocytic vesicles. Since IL-1ß plays an important role as early mediator of LPS-inflammatory responses, we evaluated whether IL-1ß mediates LPS-induced impairment of Mrp2 function. Two protocols were used: I) In vivo administration of LPS (5 mg/kg b.wt., i.p., single dose) to rats in simultaneous with administration of anti-IL-1ß (25 µg/kg b.wt., i.p., 4 doses), followed by studies of Mrp2 expression, localization and activity, 24 h after LPS administration; II) In vitro incubation of isolated intestinal sacs with IL-1ß (10 ng/mL) for 30 min, followed by analysis of Mrp2 activity and localization. We found that in vivo immunoneutralization of IL-1ß partially prevented the decrease of Mrp2 protein expression and activity as well as its internalization to intracellular domains induced by LPS. Involvement of IL-1ß in the alteration of Mrp2 localization and activity was more directly demonstrated in isolated intestinal sacs, as incubation with IL-1ß resulted in detection of Mrp2 in intracellular regions of the enterocyte in simultaneous with alteration of transport activity. In conclusion, IL-1ß induces early internalization of intestinal Mrp2, which could partially explain loss of expression at the BBM under conditions of experimental endotoxemia. Concomitant impairment of Mrp2-dependent barrier function may have pathophysiological relevance since IL-1ß mediates the effect of many local and systemic inflammatory processes.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Endotoxemia/metabolism , Interleukin-1beta/metabolism , Intestinal Mucosa/metabolism , Animals , Blotting, Western , Endotoxemia/pathology , Female , Intestinal Mucosa/ultrastructure , Microscopy, Confocal , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
10.
J Nutr Biochem ; 68: 7-15, 2019 06.
Article in English | MEDLINE | ID: mdl-31005848

ABSTRACT

Intestinal multidrug resistance-associated protein 2 is an ABC transporter that limits the absorption of xenobiotics ingested orally, thus acting as essential component of the intestinal biochemical barrier. Metabolic Syndrome (MetS) is a pathological condition characterized by dyslipidemia, hyperinsulinemia, insulin resistance, chronic inflammation, and oxidative stress (OS). In a previous study we demonstrated that MetS-like conditions induced by fructose in drinking water (10% v/v, during 21 days), significantly reduced the expression and activity of intestinal Mrp2 in rats. We here evaluated the potential beneficial effect of geraniol or vitamin C supplementation, natural compounds with anti-inflammatory and anti-oxidant properties, in reverse fructose-induced Mrp2 alterations. After MetS-like conditions were induced (21 days), animals were cotreated with geraniol or vitamin C or vehicle for another 14 days. Decreased expression of Mrp2 protein and mRNA due to fructose administration was reversed by geraniol and by vitamin C, consistent with restoration of Mrp2 activity evaluated in everted intestinal sacs. Concomitantly, increased intestinal IL-1ß and IL-6 levels induced by fructose were totally and partially counterbalanced, respectively, by geraniol administration. The intestinal redox unbalance generated by fructose was improved by geraniol and vitamin C, as evidenced by decreasing lipid peroxidation products and activity of Superoxide Dismutase and by normalizing glutathione reduced/oxidized glutathione ratio. The restoration effects exhibited by geraniol and vitamin C suggest that local inflammatory response and OS generated under MetS-like conditions represent important mediators of the intestinal Mrp2 down-regulation. Additionally, both agents could be considered of potential therapeutic value to preserve Mrp2 function under MetS conditions.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Acyclic Monoterpenes/pharmacology , Ascorbic Acid/pharmacology , Fructose/adverse effects , Intestinal Mucosa/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Body Weight/drug effects , Down-Regulation/drug effects , Eating/drug effects , Glucose/metabolism , Inflammation , Insulin Resistance , Intestinal Mucosa/metabolism , Male , Oxidative Stress/drug effects , Rats, Wistar , Triglycerides/blood
11.
Eur J Pharm Sci ; 122: 205-213, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29981893

ABSTRACT

Multidrug resistance-associated protein 2 (MRP2) plays a key role in hepatic and intestinal disposition of endo- and xenobiotics. Several therapeutic agents modulate MRP2 activity resulting in pharmacological interactions. Nomegestrol acetate (NMGA) is a progestogen increasingly used in contraceptive formulations. The aim of this work was to evaluate the effect of NMGA on MRP2 activity in HepG2 and Caco-2 cells as models of human hepatocytes and enterocytes, respectively. NMGA (5, 50 and 500 nM; 48 h) decreased MRP2-mediated transport of 2,4-dinitrophenyl-S-glutathione in HepG2 cells, with no effect on MRP2 protein expression. Acute exposure (1 h) to the same concentrations of NMGA failed to affect MRP2 activity, ruling out an inhibitory action directly induced by the drug. In contrast, acute incubation with a lysate of HepG2 cells pre-treated with NMGA, containing potential metabolites, reproduced MRP2 inhibition. Preincubation of lysates with sulfatase but not with ß-glucuronidase abolished the inhibitory action, strongly suggesting participation of NMGA sulfated derivatives. Western blot studies in plasma vs. intracellular membrane fractions ruled out internalization of MRP2 to be responsible for the impairment of transport activity. MRP2-mediated transport of 5(6)-carboxy-2',7'-dichlorofluorescein was not affected in Caco-2 cells incubated for 48 h with either 5, 50 or 500 nM NMGA. Conversely, acute exposure (1 h) of Caco-2 cells to NMGA-treated HepG2 lysates decreased MRP2 activity, being this effect also prevented by pre-treatment of the lysates with sulfatase. Taken together, these findings demonstrate an inhibitory effect of NMGA sulfated metabolites on hepatic and intestinal MRP2 function. Extrapolated to the in vivo situation, they suggest the possibility of pharmacological interactions with coadministered drugs.


Subject(s)
Contraceptive Agents/pharmacology , Megestrol/pharmacology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Norpregnadienes/pharmacology , Caco-2 Cells , Cell Survival/drug effects , Hep G2 Cells , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism
12.
Biochem Pharmacol ; 154: 118-126, 2018 08.
Article in English | MEDLINE | ID: mdl-29684377

ABSTRACT

ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Contraceptive Agents/pharmacology , Cyclic AMP/metabolism , Hepatocytes/metabolism , Megestrol/pharmacology , Norpregnadienes/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/agonists , Cyclic AMP/antagonists & inhibitors , Dose-Response Relationship, Drug , Gene Expression , Hep G2 Cells , Hepatocytes/drug effects , Humans
13.
Toxicol Lett ; 289: 63-74, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29545174

ABSTRACT

Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Carcinoma, Hepatocellular/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Multidrug Resistance-Associated Proteins/metabolism , Sirtuin 1/antagonists & inhibitors , Sirtuin 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , Acetylation/drug effects , Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/metabolism , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Naphthalenes/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Processing, Post-Translational/drug effects , Pyrimidinones/pharmacology , Sirtuin 1/metabolism , Sirtuin 2/metabolism
14.
Toxicology ; 390: 22-31, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28842383

ABSTRACT

Multidrug resistance-associated protein 2 (Mrp2, ABCC2) and P-glycoprotein (P-gp, ABCB1) constitute essential components of the intestinal biochemical barrier that prevent incorporation of food contaminants, drugs or toxic metabolites into the blood stream. Endotoxemia induced in rats by administration of bacterial lipopolysaccharide (LPS) results in elevated intestinal permeability and toxicity of xenobiotics in part associated with down-regulation of expression and activity of Mrp2 and P-gp. We evaluated the protective effect of glucagon-like peptide 2 (GLP-2), a peptide hormone with enterotrophic properties, on Mrp2 and P-gp alterations induced by single i.p. injection of LPS (5mg/kg b.wt.) to rats. Two different protocols of GLP-2 administration, namely prevention and reversion, were examined. The prevention protocol consisted of 7s.c. injections of GLP-2 (125µg/kg b.wt.) administered every 12h, starting 60h before LPS administration. The reversion protocol consisted of 2 doses of GLP-2, starting 3h after LPS injection. Intestinal samples were collected 24h after LPS administration and expression (protein and mRNA) and activity of Mrp2 were evaluated in proximal jejunum whereas those of P-gp were studied in ileum. GLP-2 completely neutralized down-regulation of expression of Mrp2 and P-gp and loss of their respective activities induced by LPS under prevention protocol. GLP-2 was also able to prevent internalization of both transporters from the apical membrane of the enterocyte to intracellular compartments, as detected by confocal microscopy. LPS induced an increase in IL-1ß and oxidized glutathione tissue levels, which were also counterbalanced by GLP-2 administration. In contrast, the reversion protocol failed to attenuate Mrp2 and P-gp down-regulation induced by LPS. We conclude that GLP-2 can prevent down-regulation of intestinal expression and activity of Mrp2 and P-gp in endotoxemic rats and that IL-1ß and oxidative stress constitute potential targets of GLP-2 protective effects.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Endotoxemia/prevention & control , Glucagon-Like Peptide 2/administration & dosage , Jejunum/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP-Binding Cassette Transporters/genetics , Animals , Antioxidants/metabolism , Disease Models, Animal , Down-Regulation , Drug Administration Schedule , Endotoxemia/chemically induced , Endotoxemia/metabolism , Female , Glutathione/metabolism , Injections, Subcutaneous , Interleukin-1beta/metabolism , Intestinal Absorption , Lipopolysaccharides , Oxidation-Reduction , Oxidative Stress/drug effects , Permeability , Rats, Wistar , Time Factors
15.
J Nutr Biochem ; 40: 178-186, 2017 02.
Article in English | MEDLINE | ID: mdl-27915161

ABSTRACT

Expression and activity of jejunal multidrug resistance-associated protein 2 (Mrp2) and glutathione-S-transferase (GST) were examined in fructose fed Wistar rats, an experimental model of metabolic syndrome. Animals were fed on (a) control diet or (b) control diet plus 10% w/vol fructose in the drinking water. Mrp2 and the α class of GST proteins as well as their corresponding mRNAs were decreased, suggesting a transcriptional regulation by fructose. Confocal microscopy studies reaffirmed down-regulation of Mrp2. Everted intestinal sacs were incubated with 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated derivative, dinitrophenyl- S-glutathione (DNP-SG; model Mrp2 substrate), was measured in the same compartment to estimate Mrp2 activity. Excretion of DNP-SG was substantially decreased by fructose treatment, consistent with simultaneous down-regulation of Mrp2 and GST. In addition, the effect of fructose on intestinal barrier function exerted by Mrp2 was evaluated in vivo using valsartan, a recognized Mrp2 substrate of therapeutic use. After intraduodenal administration as a bolus, intestinal absorption of valsartan was increased in fructose-drinking animals. Fructose administration also induced oxidative stress in intestinal tissue as demonstrated by significant increases of intestinal lipid peroxidation end products and activity of the antioxidant enzyme superoxide dismutase, by a decreased GSH/GSSG ratio. Moreover, fructose treatment conduced to increased intestinal levels of the proinflammatory cytokines IL-ß1 and IL-6. Collectively, our results demonstrate that metabolic syndrome-like conditions, induced by a fructose-rich diet, result in down-regulation of intestinal Mrp2 expression and activity and consequently in an impairment of its barrier function.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Fructose/adverse effects , Intestines/drug effects , ATP-Binding Cassette Transporters/genetics , Animals , Antioxidants/metabolism , Body Weight/drug effects , Cytokines/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Glutathione Transferase/metabolism , Intestinal Mucosa/metabolism , Lipid Peroxidation/drug effects , Male , Metabolic Syndrome/chemically induced , Rats, Wistar , Superoxide Dismutase/metabolism
16.
Curr Med Chem ; 23(13): 1370-89, 2016.
Article in English | MEDLINE | ID: mdl-27048380

ABSTRACT

ATP binding cassette (ABC) transporters are involved in drug absorption, distribution and elimination. They also mediate multidrug resistance in cancer cells. Isoflavones, such as genistein (GNT), belong to a class of naturally-occurring compounds found at high concentrations in commonly consumed soya based-foods and dietary supplements. GNT and its metabolites interact with ABC transporters as substrates, inhibitors and/or modulators of their expression. This review compiles information about regulation of ABC transporters by GNT with special emphasis on the three major groups of ABC transporters involved in excretion of endo- and xenobiotics as follows: Pglycoprotein (MDR1, ABCB1), a group of multidrug resistance associated proteins (MRPs, ABCC subfamily) and ABCG2 (BCRP), an ABC half-transporter. The impact of these regulations on potential GNT-drug interactions is further considered.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Genistein/pharmacology , Phytoestrogens/pharmacology , Drug Interactions , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Genistein/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phytoestrogens/metabolism
17.
PLoS One ; 10(3): e0119502, 2015.
Article in English | MEDLINE | ID: mdl-25781341

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 µM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 µM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 µM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 µM) and MRP2 induction by GNT (only at 10 µM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.


Subject(s)
Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genistein/pharmacology , Membrane Transport Proteins/metabolism , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Antineoplastic Agents/pharmacology , Blotting, Western , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , MicroRNAs/genetics , Niacinamide/pharmacology , Phytoestrogens/pharmacology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sorafenib , Tumor Cells, Cultured
18.
Biochem Pharmacol ; 86(3): 401-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23747343

ABSTRACT

Previously, we have demonstrated that 17α-ethynylestradiol (EE) induces rat multidrug-resistance associated protein 3 (Mrp3, Abcc3) expression transcriptionally through estrogen receptor-α (ER-α) activation. We explored the effect of EE on MRP3 expression of human origin. HepG2 cells were transfected with ER-α and incubated with EE (1-10-50 µM) for 48 h. MRP3 protein and mRNA levels were measured by Western blotting and Real time PCR, respectively. EE up-regulated MRP3 protein and mRNA at 50 µM only in ER-α(+)-HepG2 cells. The in silico analysis of mrp3 promoter region demonstrated absence of estrogen response elements, but showed several Ap-1 binding sites. We further evaluated the potential involvement of the transcription factors c-JUN and c-FOS (members of Ap-1) in MRP3 up-regulation. ER-α(+) HepG2 cells were incubated with EE and c-FOS and c-JUN levels measured by Western blotting in nuclear extracts. EE up-regulated only c-JUN. Experiments of overexpression and knock-down of c-JUN by siRNA further demonstrated that this transcription factor is indeed implicated in MRP3 upregulation by EE. Co-immunoprecipitation assay demonstrated that EE induces c-JUN/ER-α interaction, and chromatin immunoprecipitation assay showed that this complex is recruited to the AP-1 binding consensus element present at the position (-1300/-1078 bp) of human mrp3 promoter. We conclude that EE induces MRP3 expression through ER-α, with recruitment of ER-α in complex with c-JUN to the human mrp3 promoter.


Subject(s)
Estrogen Receptor alpha/physiology , Ethinyl Estradiol/pharmacology , Multidrug Resistance-Associated Proteins/biosynthesis , Transcription Factor AP-1/physiology , Base Sequence , Hep G2 Cells , Humans , Molecular Sequence Data , Multidrug Resistance-Associated Proteins/genetics
19.
Toxicology ; 285(1-2): 18-24, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21459122

ABSTRACT

We evaluated the effect of spironolactone (SL), a well-known inducer of biotransformation and elimination pathways, on the expression and activity of P-glycoprotein (P-gp/ABCB1/MDR1), a major xenobiotic transporter, in HepG2 cells, as well as the potential mediation of pregnane X nuclear receptor (PXR). Cells were exposed to SL (1, 5, 10, 20 or 50 µM) for 48 h. Expression of P-gp and its mRNA levels were estimated by Western blotting and real time PCR, respectively. P-gp activity was inversely correlated with the ability of the cells to accumulate the model substrate rhodamine 123 (Rh123, 5 µM), in the presence or absence of verapamil (50 µM), a P-gp inhibitor. At the highest dose of SL tested, P-gp and MDR1 mRNA levels were significantly increased (73 and 108%) with respect to control cells. Rh123 accumulation was concomitantly reduced and verapamil was able to abolish this effect, confirming P-gp participation. Additionally, we tested the cytotoxicity of doxorubicin, a model substrate of P-gp, under inducing conditions. HepG2 cells treated with SL exhibited higher viability, i.e. less doxorubicin toxicity, than control cells, consistent with P-gp up-regulation. When HepG2 cells were treated with SL in the presence of ketoconazole (KTZ), a non-specific nuclear receptor inhibitor, the up-regulation of P-gp was suppressed. To further identify the nuclear receptor involved, cells were transfected with a siRNA directed against human PXR, leading to a 74% decrease in PXR protein levels, which totally abolished SL induction of P-gp. We conclude that SL up-regulates P-gp expression, likely at transcriptional level, and its efflux activity in HepG2 cells. This effect is mediated by PXR. Thus, ligands of PXR such as SL may alter the disposition and toxicity of other xenobiotics, including drugs of therapeutic use, that are P-gp substrates.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Steroid/metabolism , Spironolactone/pharmacology , Up-Regulation/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Blotting, Western , Dose-Response Relationship, Drug , Doxorubicin/toxicity , Drug Interactions , Hep G2 Cells , Humans , Mineralocorticoid Receptor Antagonists/administration & dosage , Polymerase Chain Reaction , Pregnane X Receptor , RNA, Messenger/metabolism , Rhodamine 123/pharmacokinetics , Spironolactone/administration & dosage , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL