Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Publication year range
1.
Psychol Med ; : 1-10, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780379

ABSTRACT

BACKGROUND: Cognitive control (CC) involves a top-down mechanism to flexibly respond to complex stimuli and is impaired in schizophrenia. METHODS: This study investigated the impact of increasing complexity of CC processing in 140 subjects with psychosis and 39 healthy adults, with assessments of behavioral performance, neural regions of interest and symptom severity. RESULTS: The lowest level of CC (Stroop task) was impaired in all patients; the intermediate level of CC (Faces task) with explicit emotional information was most impaired in patients with first episode psychosis. Patients showed activation of distinct neural CC and reward networks, but iterative learning based on the higher-order of CC during the trust game, was most impaired in chronic schizophrenia. Subjects with first episode psychosis, and patients with lower symptom load, demonstrate flexibility of the CC network to facilitate learning, which appeared compromised in the more chronic stages of schizophrenia. CONCLUSION: These data suggest optimal windows for opportunities to introduce therapeutic interventions to improve CC.

2.
Mol Psychiatry ; 28(5): 2039-2048, 2023 05.
Article in English | MEDLINE | ID: mdl-36806762

ABSTRACT

Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.


Subject(s)
Glutamic Acid , Schizophrenia , Male , Humans , Glutamic Acid/metabolism , Schizophrenia/metabolism , Glutamine/metabolism , Brain/metabolism , Proton Magnetic Resonance Spectroscopy
3.
Psychol Med ; 53(10): 4614-4626, 2023 07.
Article in English | MEDLINE | ID: mdl-35699135

ABSTRACT

BACKGROUND: Cognitive Bias Modification for paranoia (CBM-pa) is a novel, theory-driven psychological intervention targeting the biased interpretation of emotional ambiguity associated with paranoia. Study objectives were (i) test the intervention's feasibility, (ii) provide effect size estimates, (iii) assess dose-response and (iv) select primary outcomes for future trials. METHODS: In a double-blind randomised controlled trial, sixty-three outpatients with clinically significant paranoia were randomised to either CBM-pa or an active control (text reading) between April 2016 and September 2017. Patients received one 40 min session per week for 6 weeks. Assessments were given at baseline, after each interim session, post-treatment, and at 1- and 3-months post-treatment. RESULTS: A total of 122 patients were screened and 63 were randomised. The recruitment rate was 51.2%, with few dropouts (four out of 63) and follow-up rates were 90.5% (1-month) and 93.7% (3-months). Each session took 30-40 min to complete. There was no statistical evidence of harmful effects of the intervention. Preliminary data were consistent with efficacy of CBM-pa over text-reading control: patients randomised to the intervention, compared to control patients, reported reduced interpretation bias (d = -0.48 to -0.76), improved symptoms of paranoia (d = -0.19 to -0.38), and lower depressed and anxious mood (d = -0.03 to -0.29). The intervention effect was evident after the third session. CONCLUSIONS: CBM-pa is feasible for patients with paranoia. A fully powered randomised control trial is warranted.


Subject(s)
Anxiety , Paranoid Disorders , Humans , Paranoid Disorders/therapy , Paranoid Disorders/psychology , Feasibility Studies , Double-Blind Method , Bias , Cognition
4.
J Med Internet Res ; 24(1): e27641, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35080501

ABSTRACT

BACKGROUND: Cognitive deficits are present in several neuropsychiatric disorders, including Alzheimer disease, schizophrenia, and depression. Assessments used to measure cognition in these disorders are time-consuming, burdensome, and have low ecological validity. To address these limitations, we developed a novel virtual reality shopping task-VStore. OBJECTIVE: This study aims to establish the construct validity of VStore in relation to the established computerized cognitive battery, Cogstate, and explore its sensitivity to age-related cognitive decline. METHODS: A total of 142 healthy volunteers aged 20-79 years participated in the study. The main VStore outcomes included verbal recall of 12 grocery items, time to collect items, time to select items on a self-checkout machine, time to make the payment, time to order coffee, and total completion time. Construct validity was examined through a series of backward elimination regression models to establish which Cogstate tasks, measuring attention, processing speed, verbal and visual learning, working memory, executive function, and paired associate learning, in addition to age and technological familiarity, best predicted VStore performance. In addition, 2 ridge regression and 2 logistic regression models supplemented with receiver operating characteristic curves were built, with VStore outcomes in the first model and Cogstate outcomes in the second model entered as predictors of age and age cohorts, respectively. RESULTS: Overall VStore performance, as indexed by the total time spent completing the task, was best explained by Cogstate tasks measuring attention, working memory, paired associate learning, and age and technological familiarity, accounting for 47% of the variance. In addition, with λ=5.16, the ridge regression model selected 5 parameters for VStore when predicting age (mean squared error 185.80, SE 19.34), and with λ=9.49 for Cogstate, the model selected all 8 tasks (mean squared error 226.80, SE 23.48). Finally, VStore was found to be highly sensitive (87%) and specific (91.7%) to age cohorts, with 94.6% of the area under the receiver operating characteristic curve. CONCLUSIONS: Our findings suggest that VStore is a promising assessment that engages standard cognitive domains and is sensitive to age-related cognitive decline.


Subject(s)
Cognition Disorders , Schizophrenia , Virtual Reality , Cognition , Humans , Neuropsychological Tests , Schizophrenia/diagnosis
5.
Ergonomics ; 65(7): 915-932, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34779716

ABSTRACT

We examined the interactive effects of task load and music tempo on cognition, affect, cardiac response, and safety-relevant behaviour during simulated driving. Using a counterbalanced, within-subjects design, participants (N = 46) were exposed to fast-, slow-, and no-music conditions at high and low loads in a high-grade simulator. Task load had the most salient effect across a broad swath of variables. For core affect, the Load × Music Condition interaction showed that, under high load, affective arousal scores were higher in the fast-tempo condition vs. slow. A main effect of tempo emerged for the HRV index of SDNN, with fast-tempo music eliciting lower scores than both slow- and no-music conditions. Behavioural data showed a main effect of tempo for risk ratings, with fast-tempo music eliciting the highest scores for a traffic-light trigger. Our findings indicate that drivers in high-load, urban environments should exercise caution in their use of fast-tempo music. Practitioner summary: We examined the interactive effects of task load and music tempo in simulated driving (urban and highway). Cognition, mood, cardiac response, and driving behaviour were assessed. Participants exhibited more risky behaviours in response to fast-tempo music. Drivers should exercise caution in their use of up-tempo music in urban settings.


Subject(s)
Music , Affect , Arousal , Exercise/physiology , Humans , Music/psychology , Psychophysiology
6.
Psychol Med ; 48(14): 2418-2427, 2018 10.
Article in English | MEDLINE | ID: mdl-29439750

ABSTRACT

BACKGROUND: The significant proportion of schizophrenia patients refractory to treatment, primarily directed at the dopamine system, suggests that multiple mechanisms may underlie psychotic symptoms. Reinforcement learning tasks have been employed in schizophrenia to assess dopaminergic functioning and reward processing, but these have not directly compared groups of treatment-refractory and non-refractory patients. METHODS: In the current functional magnetic resonance imaging study, 21 patients with treatment-resistant schizophrenia (TRS), 21 patients with non-treatment-resistant schizophrenia (NTR), and 24 healthy controls (HC) performed a probabilistic reinforcement learning task, utilizing emotionally valenced face stimuli which elicit a social bias toward happy faces. Behavior was characterized with a reinforcement learning model. Trial-wise reward prediction error (RPE)-related neural activation and the differential impact of emotional bias on these reward signals were compared between groups. RESULTS: Patients showed impaired reinforcement learning relative to controls, while all groups demonstrated an emotional bias favoring happy faces. The pattern of RPE signaling was similar in the HC and TRS groups, whereas NTR patients showed significant attenuation of RPE-related activation in striatal, thalamic, precentral, parietal, and cerebellar regions. TRS patients, but not NTR patients, showed a positive relationship between emotional bias and RPE signal during negative feedback in bilateral thalamus and caudate. CONCLUSION: TRS can be dissociated from NTR on the basis of a different neural mechanism underlying reinforcement learning. The data support the hypothesis that a favorable response to antipsychotic treatment is contingent on dopaminergic dysfunction, characterized by aberrant RPE signaling, whereas treatment resistance may be characterized by an abnormality of a non-dopaminergic mechanism - a glutamatergic mechanism would be a possible candidate.


Subject(s)
Antipsychotic Agents/pharmacology , Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Functional Neuroimaging/methods , Reinforcement, Psychology , Reward , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Adult , Cerebellum/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Emotions/physiology , Facial Expression , Facial Recognition/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Schizophrenia/diagnostic imaging
7.
Sci Rep ; 13(1): 8938, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268668

ABSTRACT

Glutamatergic dysfunction is associated with failure to respond to antipsychotic medication in individuals with schizophrenia. Our objective was to combine neurochemical and functional brain imaging methods to investigate glutamatergic dysfunction and reward processing in such individuals compared with those with treatment responsive schizophrenia, and healthy controls. 60 participants played a trust task, while undergoing functional magnetic resonance imaging: 21 classified as having treatment-resistant schizophrenia, 21 patients with treatment-responsive schizophrenia, and 18 healthy controls. Proton magnetic resonance spectroscopy was also acquired to measure glutamate in the anterior cingulate cortex. Compared to controls, treatment responsive and treatment-resistant participants showed reduced investments during the trust task. For treatment-resistant individuals, glutamate levels in the anterior cingulate cortex were associated with signal decreases in the right dorsolateral prefrontal cortex when compared to those treatment-responsive, and with bilateral dorsolateral prefrontal cortex and left parietal association cortex when compared to controls. Treatment-responsive participants showed significant signal decreases in the anterior caudate compared to the other two groups. Our results provide evidence that glutamatergic differences differentiate treatment resistant and responsive schizophrenia. The differentiation of cortical and sub-cortical reward learning substrates has potential diagnostic value. Future novel interventions might therapeutically target neurotransmitters affecting the cortical substrates of the reward network.


Subject(s)
Antipsychotic Agents , Humans , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Neuroimaging , Glutamic Acid , Magnetic Resonance Imaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Prefrontal Cortex/diagnostic imaging
8.
JMIR Hum Factors ; 10: e45453, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38064256

ABSTRACT

BACKGROUND: Paranoia is a highly debilitating mental health condition. One novel intervention for paranoia is cognitive bias modification for paranoia (CBM-pa). CBM-pa comes from a class of interventions that focus on manipulating interpretation bias. Here, we aimed to develop and evaluate new therapy content for CBM-pa for later use in a self-administered digital therapeutic for paranoia called STOP ("Successful Treatment of Paranoia"). OBJECTIVE: This study aimed to (1) take a user-centered approach with input from living experts, clinicians, and academics to create and evaluate paranoia-relevant item content to be used in STOP and (2) engage with living experts and the design team from a digital health care solutions company to cocreate and pilot-test the STOP mobile app prototype. METHODS: We invited 18 people with living or lived experiences of paranoia to create text exemplars of personal, everyday emotionally ambiguous scenarios that could provoke paranoid thoughts. Researchers then adapted 240 suitable exemplars into corresponding intervention items in the format commonly used for CBM training and created 240 control items for the purpose of testing STOP. Each item included newly developed, visually enriching graphics content to increase the engagement and realism of the basic text scenarios. All items were then evaluated for their paranoia severity and readability by living experts (n=8) and clinicians (n=7) and for their item length by the research team. Items were evenly distributed into six 40-item sessions based on these evaluations. Finalized items were presented in the STOP mobile app, which was co-designed with a digital health care solutions company, living or lived experts, and the academic team; user acceptance was evaluated across 2 pilot tests involving living or lived experts. RESULTS: All materials reached predefined acceptable thresholds on all rating criteria: paranoia severity (intervention items: ≥1; control items: ≤1, readability: ≥3, and length of the scenarios), and there was no systematic difference between the intervention and control group materials overall or between individual sessions within each group. For item graphics, we also found no systematic differences in users' ratings of complexity (P=.68), attractiveness (P=.15), and interest (P=.14) between intervention and control group materials. User acceptance testing of the mobile app found that it is easy to use and navigate, interactive, and helpful. CONCLUSIONS: Material development for any new digital therapeutic requires an iterative and rigorous process of testing involving multiple contributing groups. Appropriate user-centered development can create user-friendly mobile health apps, which may improve face validity and have a greater chance of being engaging and acceptable to the target end users.


Subject(s)
Mobile Applications , Telemedicine , Humans , Paranoid Disorders/therapy , User-Centered Design , User-Computer Interface
9.
Front Aging Neurosci ; 14: 876832, 2022.
Article in English | MEDLINE | ID: mdl-36212034

ABSTRACT

Background: Aspects of cognitive function decline with age. This phenomenon is referred to as age-related cognitive decline (ARCD). Improving the understanding of these changes that occur as part of the ageing process can serve to enhance the detection of the more incapacitating neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employ novel methods to assess ARCD by exploring the utility of the alpha3/alpha2 electroencephalogram (EEG) power ratio - a marker of AD, and a novel virtual reality (VR) functional cognition task - VStore, in discriminating between young and ageing healthy adults. Materials and methods: Twenty young individuals aged 20-30, and 20 older adults aged 60-70 took part in the study. Participants underwent resting-state EEG and completed VStore and the Cogstate Computerised Cognitive Battery. The difference in alpha3/alpha2 power ratios between the age groups was tested using t-test. In addition, the discriminatory accuracy of VStore and Cogstate were compared using logistic regression and overlying receiver operating characteristic (ROC) curves. Youden's J statistic was used to establish the optimal threshold for sensitivity and specificity and model performance was evaluated with the DeLong's test. Finally, alpha3/alpha2 power ratios were correlated with VStote and Cogstate performance. Results: The difference in alpha3/alpha2 power ratios between age cohorts was not statistically significant. On the other hand, VStore discriminated between age groups with high sensitivity (94%) and specificity (95%) The Cogstate Pre-clinical Alzheimer's Battery achieved a sensitivity of 89% and specificity of 60%, and Cogstate Composite Score achieved a sensitivity of 83% and specificity of 85%. The differences between the discriminatory accuracy of VStore and Cogstate models were statistically significant. Finally, high alpha3/alpha2 power ratios correlated strongly with VStore (r = 0.73), the Cogstate Pre-clinical Alzheimer's Battery (r = -0.67), and Cogstate Composite Score (r = -0.76). Conclusion: While we did not find evidence that the alpha3/alpha2 power ratio is elevated in healthy ageing individuals compared to young individuals, we demonstrated that VStore can classify age cohorts with high accuracy, supporting its utility in the assessment of ARCD. In addition, we found preliminary evidence that elevated alpha3/alpha2 power ratio may be linked to lower cognitive performance.

10.
BJPsych Open ; 8(5): e175, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36156189

ABSTRACT

BACKGROUND: Conventional pharmacological approaches have limited effectiveness for schizophrenia. There is interest in the application of oxytocin, which is involved in social cognition. Clinical trials have yielded mixed results, with a gap in understanding neural mechanisms. AIMS: To evaluate the behavioural impact of oxytocin administration on a social learning task in individuals with schizophrenia, and elucidate any differential neural activity produced. METHOD: We recruited 20 clinically stable right-handed men diagnosed with schizophrenia or schizoaffective disorder. In a double-blind cross-over randomised controlled study, 40 IU of oxytocin or placebo were administered before functional magnetic resonance imaging of participants playing a multi-round economic exchange game of trust. Participants had the role of investors (investment trials) receiving repayment on their investments (repayment trials), playing one session against a computer and a second against a player believed to be human. RESULTS: During investment trials, oxytocin increased neural signalling in the right lateral parietal cortex for both human and computer player trials, and attenuated signalling in the right insula for human player trials. For repayment trials, oxytocin elicited signal increases in left insula and left ventral caudate, and a signal decrease in right amygdala during the human player trials; conversely it resulted in right dorsal caudate activation during the computer player trials. We did not find a significant change in behavioural performance associated with oxytocin administration, or any associations with symptoms. CONCLUSIONS: During a social learning task oxytocin modulates cortical and limbic substrates of the reward-processing network. These perturbations can be putatively linked to the pathoaetiology of schizophrenia.

11.
Anxiety Stress Coping ; 34(1): 96-106, 2021 01.
Article in English | MEDLINE | ID: mdl-32779945

ABSTRACT

Background and Objectives: The role of interpretation bias in generating and maintaining persecutory beliefs/paranoid ideation is becoming established in the literature, but how negative mood affects this relationship remains unclear. The current study investigated the mediating role of anxiety and depression in the association between interpretation bias and paranoia in patients with persistent paranoia. Methods/Design: We applied the mediation model to clinical data gathered from patients with persistent paranoia (N = 62), and compared how levels of depression and anxiety affected the association between interpretation bias and paranoia. Results: Interpretation bias and anxiety accounted for 43% of the variance in paranoia, while interpretation bias and depression explained 31% of this variance. Levels of anxiety, but not depression, partially mediated the relationship between interpretation bias and paranoid beliefs. Our data suggest that the association between interpretation bias and paranoid beliefs takes effect partly, although not completely, through heightened levels of anxiety. Conclusions: The current study highlighted the role of anxiety as a mediator in the association between interpretation bias and paranoid beliefs in patients with distressing paranoia. These findings inform the potential mechanism underlying cognitive interventions for pathological paranoia. Trial registration: Current Controlled Trials ISRCTN: 90749868. Retrospectively registered on 12 May 2016.


Subject(s)
Affect , Anxiety Disorders/complications , Anxiety Disorders/psychology , Interpersonal Relations , Paranoid Disorders/complications , Paranoid Disorders/psychology , Female , Humans , Male , Middle Aged , Psychiatric Status Rating Scales
12.
Appl Ergon ; 96: 103436, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34087703

ABSTRACT

We investigated the effect of participant-selected (PSel) and researcher-selected (RSel) music on urban driving behaviour in young men (N = 27; Mage = 20.6 years, SD = 1.9 years). A counterbalanced, within-subjects design was used with four simulated driving conditions: PSel fast-tempo music, PSel slow-tempo music, RSel music and an urban traffic-noise control. The between-subjects variable of personality (introverts vs. extroverts) was explored. The presence of PSel slow-tempo music and RSel music optimised affective valence and arousal for urban driving. NASA Task Load Index scores indicated that the urban traffic-noise control increased mental demand compared to PSel slow-tempo music. In the PSel slow-tempo condition, less use was made of the brake pedal. When compared to extroverts, introverts recorded lower mean speed and attracted lower risk ratings under PSel slow-tempo music. The utility of PSel slow-tempo and RSel music was demonstrated in terms of optimising affective state for simulated urban driving.


Subject(s)
Automobile Driving , Music , Adult , Arousal , Emotions , Humans , Male , Psychophysiology , Young Adult
13.
Neuroimage Clin ; 30: 102631, 2021.
Article in English | MEDLINE | ID: mdl-33799270

ABSTRACT

Antipsychotic treatment resistance affects a third of people with schizophrenia and the underlying mechanism remains unclear. We used an fMRI emotion-yoked reward learning task, allied to prefrontal cortical glutamate levels, to explain the role of cognitive control in differentiating treatment-resistant from responsive patients. We investigated how reward learning is disrupted at the network level in 21 medicated treatment-responsive and 20 medicated treatment-resistant patients with schizophrenia compared with 24 healthy controls (HC). Dynamic Causal Modelling assessed how effective connectivity between regions in a cortico-striatal-limbic network is disrupted in each patient group compared to HC. Connectivity was also examined with respect to symptoms, salience and anterior cingulate (ACC) glutamate levels measured from the same region of the ACC. We found that ACC connectivity differentiated these patient groups, with responsive patients exhibiting increased top-down connectivity from ACC to sensory regions and reduced ACC drive to the striatum, while resistant patients showed altered connectivity within the ACC itself. In these resistant patients, the ACC drive to striatum was positively correlated with their symptom severity. ACC glutamate levels were found to correlate with ACC control over sensory regions in responsive patients but not in resistant patients. We suggest a central non-dopaminergic impairment that impacts cognitive control networks in treatment-resistant schizophrenia. This impairment was associated with disrupted reward learning and could be underpinned by aberrant glutamate function. These findings should form the focus of future treatment strategies (e.g. glutamatergic targets and giving clozapine earlier) in resistant patients.


Subject(s)
Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/therapeutic use , Cognition , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy
14.
Psychiatry Res ; 295: 113607, 2021 01.
Article in English | MEDLINE | ID: mdl-33285345

ABSTRACT

Approximately one third of psychosis patients fail to respond to conventional antipsychotic medication, which exerts its effect via striatal dopamine receptor antagonism. The present study aimed to investigate impaired cognitive control as a potential contributor to persistent positive symptoms in treatment resistant (TR) patients. 52 medicated First Episode Psychosis (FEP) patients (17 TR and 35 non-TR (NTR)) took part in a longitudinal study in which they performed a series of cognitive tasks and a clinical assessment at two timepoints, 12 months apart. Cognitive performance at baseline was compared to that of 39 healthy controls (HC). Across both timepoints, TR patients were significantly more impaired than NTR patients in a task of cognitive control, while performance on tasks of phonological and semantic fluency, working memory and general intelligence did not differ between patient groups. No significant associations were found between cognitive performance and psychotic symptomatology, and no significant performance changes were observed from the first to second timepoint in any of the cognitive tasks within patient groups. The results suggest that compared with NTR patients, TR patients have an exacerbated deficit specific to cognitive control, which is established early in psychotic illness and stabilises in the years following a first episode.


Subject(s)
Cognition/physiology , Psychomotor Performance/physiology , Psychotic Disorders/diagnosis , Psychotic Disorders/psychology , Adult , Antipsychotic Agents/therapeutic use , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Cognitive Dysfunction/therapy , Female , Follow-Up Studies , Humans , Intelligence/physiology , Longitudinal Studies , Male , Memory, Short-Term/physiology , Neuropsychological Tests , Psychotic Disorders/therapy , Time Factors , Young Adult
15.
JAMA Psychiatry ; 78(6): 667-681, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33881460

ABSTRACT

Importance: Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear. Objective: To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites. Data Sources: The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 114 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data. Study Selection: In total, 45 1H-MRS studies contributed data. Data Extraction and Synthesis: Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor. Main Outcomes and Measures: Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL). Results: In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.5 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,1522.4 = 47.533, P < .001; cerebrospinal fluid-corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, -0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose. Conclusions and Relevance: Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/metabolism , Glutamic Acid/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Schizophrenia/physiopathology , Adult , Age Factors , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/drug effects , Female , Glutamic Acid/drug effects , Glutamine/drug effects , Glutamine/metabolism , Humans , Male , Patient Acuity , Proton Magnetic Resonance Spectroscopy , Young Adult
16.
Sci Rep ; 10(1): 5164, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198484

ABSTRACT

Contemporary theories propose that dysregulation of emotional perception is involved in the aetiology of psychosis. 298 healthy adolescents were assessed at age 14- and 19-years using fMRI while performing a facial emotion task. Psychotic-like experiences (PLEs) were assessed with the CAPE-42 questionnaire at age 19. The high PLEs group at age 19 years exhibited an enhanced response in right insular cortex and decreased response in right prefrontal, right parahippocampal and left striatal regions; also, a gradient of decreasing response to emotional faces with age, from 14 to 19 years, in the right parahippocampal region and left insular cortical area. The right insula demonstrated an increasing response to emotional faces with increasing age in the low PLEs group, and a decreasing response over time in the high PLEs group. The change in parahippocampal/amygdala and insula responses during the perception of emotional faces in adolescents with high PLEs between the ages of 14 and 19 suggests a potential 'aberrant' neurodevelopmental trajectory for critical limbic areas. Our findings emphasize the role of the frontal and limbic areas in the aetiology of psychotic symptoms, in subjects without the illness phenotype and the confounds introduced by antipsychotic medication.


Subject(s)
Emotions/physiology , Facial Expression , Psychotic Disorders/psychology , Adolescent , Amygdala/physiology , Brain/physiology , Cerebral Cortex/physiology , Databases, Factual , Female , Humans , Magnetic Resonance Imaging/methods , Male , Young Adult
17.
Neuroimage ; 47(2): 581-9, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19398023

ABSTRACT

We present an empirical Bayesian scheme for distributed multimodal inversion of electromagnetic forward models of EEG and MEG signals. We used a generative model with common source activity and separate error components for each modality. Under this scheme, the weightings of error for each modality, relative to source components, are estimated automatically from the data, by optimising the model-evidence. This obviates the need for arbitrary user-defined weightings. To evaluate the scheme, we acquired three types of data simultaneously from twelve participants: total magnetic flux (as recorded by 102 magnetometers), orthogonal in-plane gradients of the magnetic field (as recorded by 204 planar gradiometers) and voltage differences in the electrical field (recorded by 70 electrodes). We assessed the relative precision of each sensor-type in terms of signal-to-noise ratio (SNR); using empirical sample variances and optimised estimators from the generative model. We then compared the localisation of face-evoked responses, using each modality separately, with that obtained by their "fusion" under the common generative model. Finally, we quantified the conditional precisions of the source estimates using their posterior covariance, confirming that EEG can improve MEG-based source reconstructions.


Subject(s)
Algorithms , Brain Mapping/methods , Electroencephalography/methods , Evoked Potentials, Visual/physiology , Face , Magnetoencephalography/methods , Pattern Recognition, Visual/physiology , Subtraction Technique , Visual Cortex/physiology , Adult , Female , Humans , Male , Young Adult
18.
Sci Rep ; 9(1): 5162, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914748

ABSTRACT

Psychotic illness has consistently been associated with deficits in cognitive function and reduced white matter integrity in the brain. However, the link between white matter disruptions and deficits in cognitive domains remains poorly understood. We assessed cognitive performance and white matter myelin water fraction (MWF) using multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) in recent-onset psychosis patients and age-matched healthy controls (HC). Psychosis patients showed deficits in working memory, phonological and semantic fluency, general intelligence quotient and reduced MWF in the left temporal white matter compared to HC. MWF in the left inferior fronto-occipital fasciculus and inferior longitudinal fasciculus was positively associated with intelligence quotient and verbal fluency in patients, and fully mediated group differences in performance in both phonological and semantic verbal fluency. There was no association between working memory and MWF in the left temporal white matter. Negative symptoms demonstrated a negative association with MWF within the left inferior and superior longitudinal fasciculi. These findings indicate that psychosis-related deficits in distinct cognitive domains, such as verbal fluency and working memory, are not underpinned by a single common dysfunction in white matter connectivity.


Subject(s)
Cognition/physiology , Myelin Sheath/metabolism , Psychotic Disorders/physiopathology , Adult , Female , Humans , Intelligence Tests , Male , Phonetics , Semantics , Water
19.
Soc Cogn Affect Neurosci ; 14(8): 861-870, 2019 08 31.
Article in English | MEDLINE | ID: mdl-31506672

ABSTRACT

In chronic psychosis, reduced trust is associated with a neural insensitivity to social reward and reduced theory of mind (ToM). Here we investigate whether these mechanisms could underlie emerging social impairments in early psychosis. Twenty-two participants with early psychosis and 25 controls (male, 13-19 years) participated in two interactive trust games against a cooperative and unfair partner. Region of interest neuroimaging analyses included right caudate, medial prefrontal cortex (mPFC) and right temporoparietal junction (rTPJ), involved in reward and ToM processing. Both groups showed similar levels of trust (i.e. investments). However, individuals with psychosis failed to activate the caudate differentially in response to cooperation and unfairness while making decisions to trust. During cooperative returns, patients showed reduced and controls increased caudate activation. Patients demonstrated greater rTPJ activation than controls, possibly pointing towards compensatory mechanisms. Effects were associated with Wechsler Abbreviated Scale of Intelligence vocabulary scores. No group differences emerged in mPFC activation. Early psychosis is associated with an aberrant neural sensitivity to social reward. This could foster reduced social motivation and social isolation. Absent behavioural differences in early, relative to chronic psychosis could indicate that trust is achieved through increased compensatory demand on ToM.


Subject(s)
Psychotic Disorders/physiopathology , Reward , Social Behavior , Adult , Decision Making/physiology , Female , Humans , Interpersonal Relations , Magnetic Resonance Imaging , Male , Prefrontal Cortex/physiopathology , Problem Behavior , Theory of Mind/physiology , Trust
20.
Sci Rep ; 9(1): 14444, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31595009

ABSTRACT

Psychotic illness is associated with cognitive control deficits and abnormal recruitment of neural circuits subserving cognitive control. It is unclear to what extent this dysfunction underlies the development and/or maintenance of positive and negative symptoms typically observed in schizophrenia. In this study we compared fMRI activation on a standard Stroop task and its relationship with positive and negative symptoms in early psychosis (EP, N = 88) and chronic schizophrenia (CHR-SZ, N = 38) patients. CHR-SZ patients showed reduced frontal, striatal, and parietal activation across incongruent and congruent trials compared to EP patients. Higher positive symptom severity was associated with reduced activation across both trial types in supplementary motor area (SMA), middle temporal gyrus and cerebellum in EP, but not CHR-SZ patients. Higher negative symptom severity was associated with reduced cerebellar activation in EP, but not in CHR-SZ patients. A negative correlation between negative symptoms and activation in SMA and precentral gyrus was observed in EP patients and in CHR-SZ patients. The results suggest that the neural substrate of positive symptoms changes with illness chronicity, and that cognitive control related neural circuits may be most relevant in the initial development phase of positive symptoms. These findings also highlight a changing role for the cerebellum in the development and later maintenance of both positive and negative symptoms.


Subject(s)
Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Adult , Auditory Perception , Chronic Disease , Cognitive Dysfunction/etiology , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL