Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32810439

ABSTRACT

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Flow Cytometry , Humans , Leukocyte L1 Antigen Complex , Monocytes , Myeloid Cells , Prospective Studies , SARS-CoV-2
2.
Cancer Discov ; 13(4): 858-879, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36669143

ABSTRACT

Cancer immunotherapy combinations have recently been shown to improve the overall survival of advanced mesotheliomas, especially for patients responding to those treatments. We aimed to characterize the biological correlates of malignant pleural mesotheliomas' primary resistance to immunotherapy and antiangiogenics by testing the combination of pembrolizumab, an anti-PD-1 antibody, and nintedanib, a pan-antiangiogenic tyrosine kinase inhibitor, in the multicenter PEMBIB trial (NCT02856425). Thirty patients with advanced malignant pleural mesothelioma were treated and explored. Unexpectedly, we found that refractory patients were actively recruiting CD3+CD8+ cytotoxic T cells in their tumors through CXCL9 tumor release upon treatment. However, these patients displayed high levels of somatic copy-number alterations in their tumors that correlated with high blood and tumor levels of IL6 and CXCL8. Those proinflammatory cytokines resulted in higher tumor secretion of VEGF and tumor enrichment in regulatory T cells. Advanced mesothelioma should further benefit from stratified combination therapies adapted to their tumor biology. SIGNIFICANCE: Sequential explorations of fresh tumor biopsies demonstrated that mesothelioma resistance to anti-PD-1 + antiangiogenics is not due to a lack of tumor T-cell infiltration but rather due to adaptive immunosuppressive pathways by tumors, involving molecules (e.g., IL6, CXCL8, VEGF, and CTLA4) that are amenable to targeted therapies. This article is highlighted in the In This Issue feature, p. 799.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Interleukin-6 , Vascular Endothelial Growth Factor A , Lung Neoplasms/genetics , Mesothelioma/drug therapy , Mesothelioma/genetics , Immunotherapy , Genomic Instability , Inflammation/drug therapy , Inflammation/genetics , Pleural Neoplasms/drug therapy , Pleural Neoplasms/genetics
3.
J Exp Clin Cancer Res ; 42(1): 333, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057799

ABSTRACT

BACKGROUND: In addition to anti-PD(L)1, anti-CTLA-4 and anti-LAG-3, novel immune checkpoint proteins (ICP)-targeted antibodies have recently failed to demonstrate significant efficacy in clinical trials. In these trials, patients were enrolled without screening for drug target expression. Although these novel ICP-targeted antibodies were expected to stimulate anti-tumor CD8 + T-cells, the rationale for their target expression in human tumors relied on pre-clinical IHC stainings and transcriptomic data, which are poorly sensitive and specific techniques for assessing membrane protein expression on immune cell subsets. Our aim was to describe ICP expression on intratumoral T-cells from primary solid tumors to better design upcoming neoadjuvant cancer immunotherapy trials. METHODS: We prospectively performed multiparameter flow cytometry and single-cell RNA sequencing (scRNA-Seq) paired with TCR sequencing on freshly resected human primary tumors of various histological types to precisely determine ICP expression levels within T-cell subsets. RESULTS: Within a given tumor type, we found high inter-individual variability for tumor infiltrating CD45 + cells and for T-cells subsets. The proportions of CD8+ T-cells (~ 40%), CD4+ FoxP3- T-cells (~ 40%) and CD4+ FoxP3+ T-cells (~ 10%) were consistent across patients and indications. Intriguingly, both stimulatory (CD25, CD28, 4-1BB, ICOS, OX40) and inhibitory (PD-1, CTLA-4, PD-L1, CD39 and TIGIT) checkpoint proteins were predominantly co-expressed by intratumoral CD4+FoxP3+ T-cells. ScRNA-Seq paired with TCR sequencing revealed that T-cells with high clonality and high ICP expressions comprised over 80% of FoxP3+ cells among CD4+ T-cells. Unsupervised clustering of flow cytometry and scRNAseq data identified subsets of CD8+ T-cells and of CD4+ FoxP3- T-cells expressing certain checkpoints, though these expressions were generally lower than in CD4+ FoxP3+ T-cell subsets, both in terms of proportions among total T-cells and ICP expression levels. CONCLUSIONS: Tumor histology alone does not reveal the complete picture of the tumor immune contexture. In clinical trials, assumptions regarding target expression should rely on more sensitive and specific techniques than conventional IHC or transcriptomics. Flow cytometry and scRNAseq accurately characterize ICP expression within immune cell subsets. Much like in hematology, flow cytometry can better describe the immune contexture of solid tumors, offering the opportunity to guide patient treatment according to drug target expression rather than tumor histological type.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , T-Lymphocyte Subsets , Receptors, Antigen, T-Cell , Neoplasms/genetics , Neoplasms/metabolism
4.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35503263

ABSTRACT

Patients with high-risk, nonmuscle-invasive bladder cancer (NMIBC) frequently relapse after standard intravesical bacillus Calmette-Guérin (BCG) therapy and may have a dismal outcome. The mechanisms of resistance to such immunotherapy remain poorly understood. Here, using cancer cell lines, freshly resected human bladder tumors, and samples from cohorts of patients with bladder cancer before and after BCG therapy, we demonstrate 2 distinct patterns of immune subversion upon BCG relapse. In the first pattern, intracellular BCG infection of cancer cells induced a posttranscriptional downregulation of HLA-I membrane expression via inhibition of autophagy flux. Patients with HLA-I-deficient cancer cells following BCG therapy had a myeloid immunosuppressive tumor microenvironment (TME) with epithelial-mesenchymal transition (EMT) characteristics and dismal outcomes. Conversely, patients with HLA-I-proficient cancer cells after BCG therapy presented with CD8+ T cell tumor infiltrates, upregulation of inflammatory cytokines, and immune checkpoint-inhibitory molecules. The latter patients had a very favorable outcome. We surmise that HLA-I expression in bladder cancers at relapse following BCG does not result from immunoediting but rather from an immune subversion process directly induced by BCG on cancer cells, which predicts a dismal prognosis. HLA-I scoring of cancer cells by IHC staining can be easily implemented by pathologists in routine practice to stratify future treatment strategies for patients with urothelial cancer.


Subject(s)
Mycobacterium bovis , Urinary Bladder Neoplasms , Administration, Intravesical , BCG Vaccine/therapeutic use , Humans , Immunity , Immunotherapy , Neoplasm Recurrence, Local/metabolism , Tumor Microenvironment , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology
5.
Eur J Cancer ; 172: 1-12, 2022 09.
Article in English | MEDLINE | ID: mdl-35724442

ABSTRACT

PURPOSE: Many intratumoural (IT) immunotherapies are currently developed in the clinic with the aim of overcoming primary and secondary resistance and/or to limit on-target/off-tumour toxicities of immune checkpoint targeted therapies. This study aimed to describe the feasibility, safety and efficacy of IT immunotherapy treatments. DESIGN: This retrospective single-centre study included the first 100 consecutive patients enrolled in Gustave Roussy's Human IntraTumoral-ImmunoTherapy (HIT-IT) program. Patient characteristics, target description, image guidance, safety and response according to iRECIST (Response Evaluation Criteria in Solid Tumours for immunotherapy trials) were recorded. Predictive factors of complications and responses were analysed. Survival was also reported. RESULTS: From 09/2015 to 05/2020, 100 patients had 115 tumours injected during 423 treatment cycles. Most frequent primary tumour arose from the skin (n = 49), digestive track (n = 4) or head and neck (n = 8). Injected tumours' mean diameter was 37 ± 23 mm, and a median number of 4 IT injections per patient (interquartile range:3-5) were performed. Targeted tumours for IT injections were superficial lymph nodes (36.5%), subcutaneous lesions (25.2%), liver tumours (20.9%) and others (17.4% including tumour sites such as deep lymph nodes or lung). Most patients (72%) received systemic immunotherapy in combination with HIT-IT. Procedure- and drug-related adverse events (AEs) occurred in 11.3% and 33.3% of the treatment cycles, respectively. Only 3 procedure-related AEs were grade-3 (0.7%); and no grade-4 or 5 occurred. Among all cycles, 7 grade-3 and 1 grade-5 drug-related AEs were reported. Complete and partial responses were achieved for 5% and 18% of patients, respectively, while stable disease was the best response for 11%. Patients receiving HIT-IT as a 1st-line treatment (24%), or not previously pre-treated with immunotherapy (53%) responded better, p = 0.001 and p = 0.004, respectively. From 1st cycle of IT, 12-month overall progression-free survival and overall survival were 21% (14-31%) and 57% (47-68%), respectively. CONCLUSIONS: This retrospective study, conducted on patients with cancer and treated within clinical trials at Gustave Roussy, demonstrates the feasibility and safety of the IT immunotherapy strategy.


Subject(s)
Immunotherapy , Liver Neoplasms , Feasibility Studies , Humans , Immunologic Factors , Immunotherapy/adverse effects , Immunotherapy/methods , Response Evaluation Criteria in Solid Tumors , Retrospective Studies
6.
iScience ; 25(6): 104353, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35874918

ABSTRACT

Targeting immune checkpoints, such as Programmed cell Death 1 (PD1), has improved survival in cancer patients by restoring antitumor immune responses. Most patients, however, relapse or are refractory to immune checkpoint blocking therapies. Neuropilin-1 (NRP1) is a transmembrane glycoprotein required for nervous system and angiogenesis embryonic development, also expressed in immune cells. We hypothesized that NRP1 could be an immune checkpoint co-receptor modulating CD8+ T cells activity in the context of the antitumor immune response. Here, we show that NRP1 is recruited in the cytolytic synapse of PD1+CD8+ T cells, cooperates and enhances PD-1 activity. In mice, CD8+ T cells specific deletion of Nrp1 improves anti-PD1 antibody antitumor immune responses. Likewise, in human metastatic melanoma, the expression of NRP1 in tumor infiltrating CD8+ T cells predicts poor outcome of patients treated with anti-PD1. NRP1 is a promising target to overcome resistance to anti-PD1 therapies.

7.
J Exp Clin Cancer Res ; 41(1): 217, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35794623

ABSTRACT

BACKGROUND: We aimed to determine the safety and efficacy of nintedanib, an oral anti-angiogenic tyrosine kinase inhibitor, in combination with pembrolizumab, an anti-PD1 immunotherapy, in patients with advanced solid tumors (PEMBIB trial; NCT02856425). METHODS: In this monocentric phase Ib dose escalation cohort, we evaluated escalating doses of nintedanib (Dose level 1 (DL1) = 150 mg bid [bis in die, as twice a day]; DL2 = 200 mg bid, oral delivery) in combination with pembrolizumab (200 mg Q3W, IV). Patients received a 1-week lead-in dose of nintedanib monotherapy prior starting pembrolizumab. The primary objective was to establish the maximum tolerated dose (MTD) of the combination based on dose limiting toxicity (DLT) occurrence during the first 4 weeks. Secondary objectives were to assess the anti-tumor efficacy and to identify the associated immune and angiogenic parameters in order to establish the recommended nintedanib dose for expansion cohorts. Flow cytometry (FC), Immuno-Histo-Chemistry (IHC) and electrochemiluminescence multi-arrays were prospectively performed on baseline & on-treatment tumor and blood samples to identify immune correlates of efficacy. RESULTS: A total of 12/13 patients enrolled were evaluable for DLT (1 patient withdrew consent prior receiving pembrolizumab). Three patients at 200 mg bid experienced a DLT (grade 3 liver enzymes increase). Four patients developed grade 1-2 immune related adverse events (irAE). Eight patients died because of cancer progression. Median follow-up was 23.7 months (95%CI: 5.55-40.5). Three patients developed a partial response (PR) (ORR = 25%) and five patients (42%) had durable clinical benefit (DCB), defined as PR or stable disease (SD) ≥ 6 months. At baseline, patients with DCB had higher plasma levels of Tie2, CXCL10, CCL22 and circulating CD4+ PD1+ OX40+ T cells than patients without DCB. Patients with DCB presented also with more DC-LAMP+ dendritic cells, CD3+ T cells and FOXP3+ Tregs in baseline tumor biopsies. For DCB patients, the nintedanib lead-in monotherapy resulted in higher blood CCL3, Tregs and CCR4+ CXCR3+ CXCR5- memory CD4 T cells. After the first pembrolizumab infusion, patients with DCB showed lower IL-6, IL-8, IL-27 plasma levels. CONCLUSION: Nintedanib 150 mg bid is the recommended dose for combination with pembrolizumab and is currently investigated in multiple expansion cohorts. Early tumoral and circulating immune factors were associated with cancer outcome under nintedanib & pembrolizumab therapy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02856425 . Registered August 4, 2016 - Prospectively registered.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasms , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Humans , Indoles , Neoplasms/drug therapy , Neoplasms/etiology
8.
Cancers (Basel) ; 13(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34771650

ABSTRACT

Background: Resistance to anti-PD-1 remains a considerable clinical challenge for the treatment of patients with classical Hodgkin lymphoma (cHL), and mechanisms of anti-PD-1 resistance remain unknown. This pilot study aims to investigate the tumor microenvironment in patients with cHL relapsing after anti-PD-1. Methods: This study investigated tumor samples of eight patients with cHL, including four patients exposed to anti-PD-1 with a paired longitudinal histological analysis before and after anti-PD-1, and four patients not exposed to anti-PD-1 who served as control for the cellular biological investigations. Fresh cells tumor microenvironment analysis included phenotypic characterization of their T cell surfaces immune checkpoint markers PD-1, PD-L1, ICOS, TIM-3, LAG-3, 41-BB and BTLA. Tumor tissues immunohistochemistry staining included CD30, CD4, CD8, CD68, CD163, PD-L1, PD-1, LAG-3 and TIM-3. Findings: Paired longitudinal tumor tissues analysis in the tumor microenvironment found a CD8+ lymphocytes tumor depletion and an increase of LAG-3 staining after anti-PD-1 exposure. The fresh cells analysis of the tumor microenvironment in patients exposed to anti-PD-1 found CD8+ lymphocyte depletion, with an elevated CD4+/CD8+ lymphocytes ratio (median ratio 9.77 in exposed anti-PD-1 versus 2.39 in not-exposed anti-PD-1 patients; p = 0.0943). On the cell surfaces of CD4+ lymphocytes, the median positive expression of LAG-3 was significantly higher in the samples exposed to anti-PD-1 compared to the controls (15.05 [IQR:17.91-10.65] versus 3.84 [IQR 1.87-6.57]; p = 0.0376). Interpretation: This pilot study proposes hypotheses for understanding the resistance to immunotherapies in patients with Hodgkin lymphoma. Hodgkin lymphoma exposed to anti-PD-1 correlated in tumor microenvironment with an immune depletion of CD8+ T lymphocytes and overexpression of LAG-3 on CD4+ helper T lymphocytes.

9.
Clin Cancer Res ; 27(10): 2698-2705, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33419781

ABSTRACT

Human intratumoral immunotherapy (HIT-IT) is under rapid development, with promising preliminary results and high expectations for current phase III trials. While outcomes remain paramount for patients and the referring oncologists, the technical aspects of drug injection are critical to the interventional radiologist to ensure optimal and reproducible outcomes. The technical considerations for HIT-IT affect the safety, efficacy, and further development of this treatment option. Image-guided access to the tumor allows the therapeutic index of a treatment to be enhanced by increasing the intratumoral drug concentration while minimizing its systemic exposure and associated on-target off-tumor adverse events. Direct access to the tumor also enables the acquisition of cancer tissue for sequential sampling to better understand the pharmacodynamics of the injected immunotherapy and its efficacy through correlation of immune responses, pathologic responses, and imaging tumor response. The aim of this article is to share the technical insights of HIT-IT, with particular consideration for patient selection, lesion assessment, image guidance, and technical injection options. In addition, the organization of a standard patient workflow is discussed, so as to optimize HIT-IT outcome and the patient experience.


Subject(s)
Immunotherapy , Medical Oncology/methods , Neoplasms/therapy , Radiology, Interventional/methods , Clinical Decision-Making , Clinical Trials as Topic , Disease Management , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Neoplasms/diagnosis , Radiology, Interventional/standards , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Treatment Outcome
10.
Cell Death Dis ; 12(3): 258, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707411

ABSTRACT

The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, were altered in critical COVID-19 patient's plasma as compared to mild COVID-19 patients. Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.


Subject(s)
COVID-19/blood , Metabolome , SARS-CoV-2/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Biomarkers/blood , COVID-19/diagnosis , Female , Humans , Male , Metabolomics , Prognosis , COVID-19 Drug Treatment
11.
EMBO Mol Med ; 13(1): e12850, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33372722

ABSTRACT

Decision making in immuno-oncology is pivotal to adapt therapy to the tumor microenvironment (TME) of the patient among the numerous options of monoclonal antibodies or small molecules. Predicting the best combinatorial regimen remains an unmet medical need. Here, we report a multiplex functional and dynamic immuno-assay based on the capacity of the TME to respond to ex vivo stimulation with twelve immunomodulators including immune checkpoint inhibitors (ICI) in 43 human primary tumors. This "in sitro" (in situ/in vitro) assay has the potential to predict unresponsiveness to anti-PD-1 mAbs, and to detect the most appropriate and personalized combinatorial regimen. Prospective clinical trials are awaited to validate this in sitro assay.


Subject(s)
Immunotherapy , Neoplasms , Humans , Medical Oncology , Neoplasms/therapy , Prospective Studies , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL