Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Lipid Res ; 59(9): 1671-1684, 2018 09.
Article in English | MEDLINE | ID: mdl-29946055

ABSTRACT

In patients with asthma or chronic obstructive pulmonary disease, rhinovirus (RV) infections can provoke acute worsening of disease, and limited treatment options exist. Viral replication in the host cell induces significant remodeling of intracellular membranes, but few studies have explored this mechanistically or as a therapeutic opportunity. We performed unbiased lipidomic analysis on human bronchial epithelial cells infected over a 6 h period with the RV-A1b strain of RV to determine changes in 493 distinct lipid species. Through pathway and network analysis, we identified temporal changes in the apparent activities of a number of lipid metabolizing and signaling enzymes. In particular, analysis highlighted FA synthesis and ceramide metabolism as potential anti-rhinoviral targets. To validate the importance of these enzymes in viral replication, we explored the effects of commercially available enzyme inhibitors upon RV-A1b infection and replication. Ceranib-1, D609, and C75 were the most potent inhibitors, which confirmed that FAS and ceramidase are potential inhibitory targets in rhinoviral infections. More broadly, this study demonstrates the potential of lipidomics and pathway analysis to identify novel targets to treat human disorders.


Subject(s)
Bronchi/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , Lipid Metabolism , Molecular Targeted Therapy , Rhinovirus/physiology , Virus Replication , Antiviral Agents/pharmacology , HeLa Cells , Humans , Lipid Metabolism/drug effects , Rhinovirus/drug effects
2.
J Virol ; 91(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28228588

ABSTRACT

Picornavirus replication is known to cause extensive remodeling of Golgi and endoplasmic reticulum membranes, and a number of the host proteins involved in the viral replication complex have been identified, including oxysterol binding protein (OSBP) and phosphatidylinositol 4-kinase III beta (PI4KB). Since both OSBP and PI4KB are substrates for protein kinase D (PKD) and PKD is known to be involved in the control of Golgi membrane vesicular and lipid transport, we hypothesized that PKD played a role in viral replication. We present multiple lines of evidence in support of this hypothesis. First, infection of HeLa cells with human rhinovirus (HRV) induced the phosphorylation of PKD. Second, PKD inhibitors reduced HRV genome replication, protein expression, and titers in a concentration-dependent fashion and also blocked the replication of poliovirus (PV) and foot-and-mouth disease virus (FMDV) in a variety of cells. Third, HRV replication was significantly reduced in HeLa cells overexpressing wild-type and mutant forms of PKD1. Fourth, HRV genome replication was reduced in HAP1 cells in which the PKD1 gene was knocked out by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Although we have not identified the molecular mechanism through which PKD regulates viral replication, our data suggest that this is not due to enhanced interferon signaling or an inhibition of clathrin-mediated endocytosis, and PKD inhibitors do not need to be present during viral uptake. Our data show for the first time that targeting PKD with small molecules can inhibit the replication of HRV, PV, and FMDV, and therefore, PKD may represent a novel antiviral target for drug discovery.IMPORTANCE Picornaviruses remain an important family of human and animal pathogens for which we have a very limited arsenal of antiviral agents. HRV is the causative agent of the common cold, which in itself is a relatively trivial infection; however, in asthma and chronic obstructive pulmonary disease (COPD) patients, this virus is a major cause of exacerbations resulting in an increased use of medication, worsening symptoms, and, frequently, hospital admission. Thus, HRV represents a substantial health care and economic burden for which there are no approved therapies. We sought to identify a novel host target as a potential anti-HRV therapy. HRV infection induces the phosphorylation of PKD, and inhibitors of this kinase effectively block HRV replication at an early stage of the viral life cycle. Moreover, PKD inhibitors also block PV and FMDV replication. This is the first description that PKD may represent a target for antiviral drug discovery.


Subject(s)
DNA Replication/genetics , Foot-and-Mouth Disease Virus/growth & development , Poliovirus/growth & development , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Rhinovirus/growth & development , Rhinovirus/genetics , Virus Replication/genetics , Animals , Cell Line, Tumor , Cricetinae , DNA, Viral/biosynthesis , Foot-and-Mouth Disease Virus/genetics , Gene Knockout Techniques , HeLa Cells , Humans , Interferon Type I/metabolism , Phosphorylation , Poliovirus/genetics , Protein Kinase C/metabolism , Pyrimidines/pharmacology
3.
J Biol Chem ; 291(11): 5832-5843, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26755725

ABSTRACT

Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Legionella pneumophila/physiology , Legionnaires' Disease/metabolism , Protein Interaction Maps , Virulence Factors/metabolism , rab GTP-Binding Proteins/metabolism , Cell Line , Humans , Protein Binding
4.
J Virol ; 88(20): 11671-85, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25100828

ABSTRACT

The replication of picornaviruses has been described to cause fragmentation of the Golgi apparatus that blocks the secretory pathway. The inhibition of major histocompatibility complex class I upregulation and cytokine, chemokine and interferon secretion may have important implications for host defense. Previous studies have shown that disruption of the secretory pathway can be replicated by expression of individual nonstructural proteins; however the situation with different serotypes of human rhinovirus (HRV) is unclear. The expression of 3A protein from HRV14 or HRV2 did not cause Golgi apparatus disruption or a block in secretion, whereas other studies showed that infection of cells with HRV1A did cause Golgi apparatus disruption which was replicated by the expression of 3A. HRV16 is the serotype most widely used in clinical HRV challenge studies; consequently, to address the issue of Golgi apparatus disruption for HRV16, we have systematically and quantitatively examined the effect of HRV16 on both Golgi apparatus fragmentation and protein secretion in HeLa cells. First, we expressed each individual nonstructural protein and examined their cellular localization and their disruption of endoplasmic reticulum and Golgi apparatus architecture. We quantified their effects on the secretory pathway by measuring secretion of the reporter protein Gaussia luciferase. Finally, we examined the same outcomes following infection of cells with live virus. We demonstrate that expression of HRV16 3A and 3AB and, to a lesser extent, 2B caused dispersal of the Golgi structure, and these three nonstructural proteins also inhibited protein secretion. The infection of cells with HRV16 also caused significant Golgi apparatus dispersal; however, this did not result in the inhibition of protein secretion. Importance: The ability of replicating picornaviruses to influence the function of the secretory pathway has important implications for host defense. However, there appear to be differences between different members of the family and inconsistent results when comparing infection with live virus to expression of individual nonstructural proteins. We demonstrate that individual nonstructural HRV16 proteins, when expressed in HeLa cells, can both fragment the Golgi apparatus and block secretion, whereas viral infection fragments the Golgi apparatus without blocking secretion. This has major implications for how we interpret mechanistic evidence derived from the expression of single viral proteins.


Subject(s)
Golgi Apparatus/physiology , Rhinovirus/physiology , Viral Proteins/metabolism , Base Sequence , DNA Primers , HeLa Cells , Humans , Microscopy, Fluorescence , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/physiology , Virus Replication
5.
PLoS Pathog ; 8(1): e1002459, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22241989

ABSTRACT

The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/physiology , Carrier Proteins/metabolism , Legionella pneumophila/metabolism , Legionnaires' Disease/metabolism , Membrane Proteins/metabolism , Adenosine Triphosphate , Bacterial Proteins/genetics , Carrier Proteins/genetics , Genetic Complementation Test , HeLa Cells , Humans , Legionella pneumophila/genetics , Legionella pneumophila/pathogenicity , Legionnaires' Disease/genetics , Membrane Proteins/genetics , Neorickettsia sennetsu/genetics , Neorickettsia sennetsu/metabolism , Neorickettsia sennetsu/pathogenicity , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
6.
Infect Immun ; 81(11): 4261-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24002062

ABSTRACT

The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is crucial for the pathogen to survive in protozoa and cause human disease. Although more than 275 effector proteins are delivered into the host cell by the T4SS, the function of the majority is unknown. Here we have characterized the Dot/Icm effector LtpD. During infection, LtpD localized to the cytoplasmic face of the membrane of the Legionella-containing vacuole (LCV). In A549 lung epithelial cells, ectopically expressed LtpD localized to large vesicular structures that contained markers of endosomal compartments. Systematic analysis of LtpD fragments identified an internal 17-kDa fragment, LtpD471-626, which was essential for targeting ectopically expressed LtpD to vesicular structures and for the association of translocated LtpD with the LCV. LtpD471-626 bound directly to phosphatidylinositol 3-phosphate [PtdIns(3)P] in vitro and colocalized with the PtdIns(3)P markers FYVE and SetA in cotransfected cells. LtpD was also found to bind the host cell enzyme inositol (myo)-1 (or 4)-monophosphatase 1, an important phosphatase involved in phosphoinositide production. Analysis of the role of LtpD in infection showed that LtpD is involved in bacterial replication in THP-1 macrophages, the larvae of Galleria mellonella, and mouse lungs. Together, these data suggest that LtpD is a novel phosphoinositide-binding L. pneumophila effector that has a role in intracellular bacterial replication.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions , Legionella pneumophila/pathogenicity , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Virulence Factors/metabolism , Animals , Cell Line , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Mice , Mice, Inbred A , Monocytes/chemistry , Monocytes/metabolism , Monocytes/microbiology , Protein Binding , Survival Analysis , Vacuoles/chemistry , Vacuoles/metabolism , Vacuoles/microbiology
7.
Proc Natl Acad Sci U S A ; 107(7): 3129-34, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20133763

ABSTRACT

The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.


Subject(s)
Apoptosis/drug effects , Enterobacteriaceae Infections/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Virulence Factors/metabolism , Animals , Blotting, Western , Calcium/metabolism , Caspase 3/metabolism , Cell Nucleus/drug effects , Citrobacter rodentium , Cloning, Molecular , Cytosol/metabolism , Escherichia coli , Escherichia coli Proteins/pharmacology , Female , Membrane Proteins/genetics , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Specific Pathogen-Free Organisms , Two-Hybrid System Techniques , Virulence Factors/pharmacology
8.
Infect Immun ; 80(8): 2780-90, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22645286

ABSTRACT

Legionella pneumophila is a facultative intracellular human pathogen and the etiological agent of severe pneumonia known as Legionnaires' disease. Its virulence depends on protein secretion systems, in particular, the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication-permissive vacuole in macrophages. The analysis of the role of these systems and their substrates for pathogenesis requires easy-to-use models which approximate human infection. We examined the effectiveness of the larvae of the wax moth Galleria mellonella as a new model for L. pneumophila infection. We found that the L. pneumophila strains 130b, Paris, and JR32 caused mortality of the G. mellonella larvae that was strain, infectious dose, growth phase, and T4SS dependent. Wild-type L. pneumophila persisted and replicated within the larvae, whereas T4SS mutants were rapidly cleared. L. pneumophila strain Lp02, which is attenuated in the absence of thymidine but has a functional T4SS, resisted clearance in G. mellonella up to 18 h postinfection without inducing mortality. Immunofluorescence and transmission electron microscopy revealed that L. pneumophila resided within insect hemocytes in a vacuole that ultrastructurally resembled the Legionella-containing vacuole (LCV) observed in macrophages. The vacuole was decorated with the T4SS effector and LCV marker SidC. Infection caused severe damage to the insect organs and triggered immune responses, including activation of the phenoloxidase cascade leading to melanization, nodule formation, and upregulation of antimicrobial peptides. Taken together, these results suggest that G. mellonella provides an effective model to investigate the interaction between L. pneumophila and the host.


Subject(s)
Legionella pneumophila/pathogenicity , Moths/microbiology , Animals , Gene Expression Profiling , Gene Expression Regulation/immunology , Hemocytes/microbiology , Immunity, Innate , Insect Proteins/genetics , Insect Proteins/immunology , Insect Proteins/metabolism , Kinetics , Larva/immunology , Larva/microbiology , Moths/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virulence
9.
Front Med (Lausanne) ; 9: 741989, 2022.
Article in English | MEDLINE | ID: mdl-35280870

ABSTRACT

Background: Respiratory viral infections are closely associated with COPD exacerbations, hospitalisations, and significant morbidity and mortality. The consequences of the persisting inflammation and differentiation status in virus associated severe disease is not fully understood. The aim of this study was to evaluate barrier function, cellular architecture, the inflammatory response in severe COPD bronchial epithelium to human rhinovirus (HRV) induced pathological changes and innate immune responses. Methods: Well-differentiated primary bronchial epithelial cells (WD-PBECs) derived from severe COPD patients and age-matched healthy controls were cultured in the air-liquid interface (ALI) model. The differentiation phenotype, epithelial barrier integrity, pathological response and cytokine secreting profile of these cultures before and after HRV infection were investigated. Results: WD-PBECs derived from severe COPD patients showed aberrant epithelium differentiation with a decreased proportion of ciliated cells but increased numbers of club cells and goblet cells compared with healthy controls. Tight junction integrity was compromised in both cultures following HRV infection, with heightened disruptions in COPD cultures. HRV induced increased epithelial cell sloughing, apoptosis and mucus hypersecretion in COPD cultures compared with healthy controls. A Th1/Th2 imbalance and a strong interferon and pro-inflammatory cytokine response was also observed in COPD cultures, characterized by increased levels of IFNγ, IFNß, IP-10, IL-10 and decreased TSLP and IL-13 cytokine levels prior to HRV infection. Significantly enhanced basolateral secretion of eotaxin 3, IL-6, IL-8, GM-CSF were also observed in both mock and HRV infected COPD cultures compared with corresponding healthy controls. In response to HRV infection, all cultures displayed elevated levels of IFNλ1 (IL-29), IP-10 and TNFα compared with mock infected cultures. Interestingly, HRV infection dramatically reduced IFNλ levels in COPD cultures compared with healthy subjects. Conclusion: An altered differentiation phenotype and cytokine response as seen in severe COPD WD-PBECs may contribute to increased disease susceptibility and an enhanced inflammatory response to HRV infection.

10.
Mol Microbiol ; 75(2): 308-23, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19889090

ABSTRACT

Attaching and effacing (A/E) lesions and actin polymerization, the hallmark of enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) infections, are dependent on the effector Tir. Phosphorylation of Tir(EPEC/CR) Y474/1 leads to recruitment of Nck and neural Wiskott-Aldrich syndrome protein (N-WASP) and strong actin polymerization in cultured cells. Tir(EPEC/CR) also contains an Asn-Pro-Tyr (NPY(454/1)) motif, which triggers weak actin polymerization. In EHEC the NPY(458) actin polymerization pathway is amplified by TccP/EspF(U), which is recruited to Tir via IRSp53 and/or insulin receptor tyrosine kinase substrate (IRTKS). Here we used C. rodentium to investigate the different Tir signalling pathways in vivo. Following infection with wild-type C. rodentium IRTKS, but not IRSp53, was recruited to the bacterial attachment sites. Similar results were seen after infection of human ileal explants with EHEC. Mutating Y471 or Y451 in Tir(CR) abolished recruitment of Nck and IRTKS respectively, but did not affect recruitment of N-WASP or A/E lesion formation. This suggests that despite their crucial role in actin polymerization in cultured cells the Tir:Nck and Tir:IRTKS pathways are not essential for N-WASP recruitment or A/E lesion formation in vivo. Importantly, wild-type C. rodentium out-competed the tir tyrosine mutants during mixed infections. These results uncouple the Tir:Nck and Tir:IRTKS pathways from A/E lesion formation in vivo but assign them an important in vivo role.


Subject(s)
Enterohemorrhagic Escherichia coli/physiology , Enteropathogenic Escherichia coli/physiology , Escherichia coli Infections/physiopathology , 3T3 Cells/microbiology , Actins/metabolism , Animals , Bacterial Adhesion , Binding Sites , Cells, Cultured , Citrobacter rodentium/genetics , Citrobacter rodentium/pathogenicity , Citrobacter rodentium/physiology , Enterobacteriaceae Infections/physiopathology , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/pathogenicity , Enteropathogenic Escherichia coli/pathogenicity , Humans , Ileum/microbiology , Mice , Mutagenesis , Peptides/genetics , Signal Transduction , Tyrosine/genetics , Wiskott-Aldrich Syndrome/physiopathology , Wiskott-Aldrich Syndrome Protein/physiology , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
11.
J Bacteriol ; 192(22): 6001-16, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20833813

ABSTRACT

Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains.


Subject(s)
DNA, Bacterial/chemistry , Genome, Bacterial , Legionella pneumophila/genetics , Membrane Transport Proteins/genetics , Virulence Factors/genetics , Conserved Sequence , DNA, Bacterial/genetics , Environmental Microbiology , Humans , Legionella pneumophila/isolation & purification , Legionella pneumophila/metabolism , Legionella pneumophila/pathogenicity , Legionnaires' Disease/microbiology , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Virulence Factors/metabolism
12.
Microbiology (Reading) ; 156(Pt 6): 1815-1823, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20223805

ABSTRACT

Clostridium difficile is a leading cause of nosocomial infections, causing a spectrum of diseases ranging from diarrhoea to pseudomembranous colitis triggered by a range of virulence factors including C. difficile toxins A (TcdA) and B (TcdB). TcdA and TcdB are monoglucosyltransferases that irreversibly glycosylate small Rho GTPases, inhibiting their ability to interact with their effectors, guanine nucleotide exchange factors, and membrane partners, leading to disruption of downstream signalling pathways and cell death. In addition, TcdB targets the mitochondria, inducing the intrinsic apoptotic pathway resulting in TcdB-mediated apoptosis. Modulation of apoptosis is a common strategy used by infectious agents. Recently, we have shown that the enteropathogenic Escherichia coli (EPEC) type III secretion system effector NleH has a broad-range anti-apoptotic activity. In this study we examined the effects of NleH on cells challenged with TcdB. During infection with wild-type EPEC, NleH inhibited TcdB-induced apoptosis at both low and high toxin concentrations. Transfected nleH1 alone was sufficient to block TcdB-induced cell rounding, nuclear condensation, mitochondrial swelling and lysis, and activation of caspase-3. These results show that NleH acts via a global anti-apoptotic pathway.


Subject(s)
Apoptosis , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Clostridioides difficile/metabolism , Enterocolitis, Pseudomembranous/metabolism , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Caspase 3/metabolism , HeLa Cells , Humans , Mitochondrial Membranes/drug effects , Signal Transduction , rho GTP-Binding Proteins/metabolism
13.
Methods Mol Biol ; 1921: 289-303, 2019.
Article in English | MEDLINE | ID: mdl-30694500

ABSTRACT

The Dot/Icm type IV secretion system (T4SS) is essential for the pathogenesis of Legionella species and translocates a multitude of effector proteins into host cells. The identification of host cell targets of these effectors is often critical to unravel their roles in controlling the host. Here we describe a method to characterize the protein complexes associated with effectors in infected host cells. To achieve this, Legionella expressing an effector of interest fused to a Bio-tag, a combination of hexahistidine tags and a specific recognition sequence for the biotin ligase BirA, are used to infect host cells expressing BirA, which leads to biotinylation of the translocated effector. Following chemical cross-linking, effector interactomes are isolated by tandem affinity purification employing metal affinity and NeutrAvidin resins and identified by western blotting or mass spectrometry.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Protein Interaction Mapping , Tandem Affinity Purification , Type IV Secretion Systems , Carrier Proteins/metabolism , Cell Line , Humans , Legionella pneumophila/physiology , Legionnaires' Disease/metabolism , Legionnaires' Disease/microbiology , Mass Spectrometry , Protein Binding , Protein Interaction Mapping/methods
14.
Infect Immun ; 76(10): 4669-76, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18678675

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen that colonizes the gut mucosa via attaching and effacing (A/E) lesions; A/E lesion formation in vivo and ex vivo is dependent on the type III secretion system (T3SS) effector Tir. Infection of cultured cells by EHEC leads to induction of localized actin polymerization, which is dependent on Tir and a second T3SS effector protein, TccP, also known as EspF(U). Recently, cortactin was shown to bind both the N terminus of Tir and TccP via its SH3 domain and to play a role in EHEC-triggered actin polymerization in vitro. In this study, we investigated the recruitment of cortactin to the site of EHEC adhesion during infection of in vitro-cultured cells and mucosal surfaces ex vivo (using human terminal ileal in vitro organ cultures [IVOC]). We have shown that cortactin is recruited to the site of EHEC adhesion in vitro downstream of TccP and N-WASP. Deletion of the entire N terminus of Tir or replacing the N-terminal polyproline region with alanines did not abrogate actin polymerization or cortactin recruitment. In contrast, recruitment of cortactin to the site of EHEC adhesion in IVOC is TccP independent. These results imply that cortactin is recruited to the site of EHEC adhesion in vitro and ex vivo by different mechanisms and suggest that cortactin might have a role during EHEC infection of mucosal surfaces.


Subject(s)
Bacterial Adhesion , Cortactin/metabolism , Escherichia coli O157/physiology , Actins/metabolism , Adolescent , Animals , Cell Line , Cells, Cultured , Child , Epithelial Cells/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Intestinal Mucosa/microbiology , Mice , Organ Culture Techniques , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
15.
Infect Immun ; 76(1): 361-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17984209

ABSTRACT

Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O125:H6, which represents a large category of strains, lacks the ability to utilize either Nck or TccP/TccP2 and hence triggers actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expression of TccP in EPEC O125:H6, which harbors an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron-dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck- and TccP-independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Intestines/pathology , Oncogene Proteins/metabolism , Actins/metabolism , Bacterial Adhesion , Biopsy , Escherichia coli Proteins/genetics , Gene Expression Regulation , HeLa Cells , Humans , Intestines/microbiology , Molecular Sequence Data , Receptors, Cell Surface/genetics
16.
Infect Immun ; 76(11): 4804-13, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18725419

ABSTRACT

The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-kappaB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC DeltanleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-kappaB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-kappaB response elements, we found that NleH causes an increase in NF-kappaB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain.


Subject(s)
Citrobacter rodentium/pathogenicity , Escherichia coli O157/pathogenicity , Intestinal Mucosa/microbiology , Virulence Factors/metabolism , Animals , Cattle , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/pathology , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/pathology , Fluorescent Antibody Technique, Indirect , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , NF-kappa B/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Swine , Virulence Factors/genetics
17.
Nat Chem ; 10(6): 599-606, 2018 06.
Article in English | MEDLINE | ID: mdl-29760414

ABSTRACT

Rhinoviruses (RVs) are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report the discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host-cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. The identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking and conformational control over linker geometry. We show that inhibition of the co-translational myristoylation of a specific virus-encoded protein (VP0) by IMP-1088 potently blocks a key step in viral capsid assembly, to deliver a low nanomolar antiviral activity against multiple RV strains, poliovirus and foot and-mouth disease virus, and protection of cells against virus-induced killing, highlighting the potential of host myristoylation as a drug target in picornaviral infections.


Subject(s)
Acyltransferases/antagonists & inhibitors , Antiviral Agents/pharmacology , Capsid/drug effects , Enzyme Inhibitors/pharmacology , Rhinovirus/drug effects , Virus Assembly/drug effects , Virus Replication/drug effects , Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , HeLa Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Rhinovirus/enzymology , Rhinovirus/physiology
18.
Eur J Pharmacol ; 729: 75-85, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24534492

ABSTRACT

The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to ß-arrestin and stimulated GTPγS binding however CCL17 did not couple to ß-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.


Subject(s)
Chemotaxis/physiology , Endocytosis/physiology , Receptors, CCR4/antagonists & inhibitors , Receptors, CCR4/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Basophils/drug effects , Basophils/metabolism , CHO Cells , Cells, Cultured , Chemokine CCL17/pharmacology , Chemokine CCL22/pharmacology , Chemotaxis/drug effects , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Endocytosis/drug effects , Humans
19.
mBio ; 5(4)2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25118235

ABSTRACT

UNLABELLED: Legionella pneumophila, the causative agent of Legionnaires' disease, uses the Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effectors into host cells, where they subvert host cell signaling. The function and host cell targets of most effectors remain unknown. PieE is a 69-kDa Dot/Icm effector containing three coiled-coil (CC) regions and 2 transmembrane (TM) helices followed by a fourth CC region. Here, we report that PieE dimerized by an interaction between CC3 and CC4. We found that ectopically expressed PieE localized to the endoplasmic reticulum (ER) and induced the formation of organized smooth ER, while following infection PieE localized to the Legionella-containing vacuole (LCV). To identify the physiological targets of PieE during infection, we established a new purification method for which we created an A549 cell line stably expressing the Escherichia coli biotin ligase BirA and infected the cells with L. pneumophila expressing PieE fused to a BirA-specific biotinylation site and a hexahistidine tag. Following tandem Ni(2+) nitrilotriacetic acid (NTA) and streptavidin affinity chromatography, the effector-target complexes were analyzed by mass spectrometry. This revealed interactions of PieE with multiple host cell proteins, including the Rab GTPases 1a, 1b, 2a, 5c, 6a, 7, and 10. Binding of the Rab GTPases, which was validated by yeast two-hybrid binding assays, was mediated by the PieE CC1 and CC2. In summary, using a novel, highly specific strategy to purify effector complexes from infected cells, which is widely applicable to other pathogens, we identified PieE as a multidomain LCV protein with promiscuous Rab GTPase-binding capacity. IMPORTANCE: The respiratory pathogen Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate more than 300 effector proteins into host cells. The function of most effectors in infection remains unknown. One of the bottlenecks for their characterization is the identification of target proteins. Frequently used in vitro approaches are not applicable to all effectors and suffer from high rates of false positives or missed interactions, as they are not performed in the context of an infection. Here, we determine key functional domains of the effector PieE and describe a new method to identify host cell targets under physiological infection conditions. Our approach, which is applicable to other pathogens, uncovered the interaction of PieE with several proteins involved in membrane trafficking, in particular Rab GTPases, revealing new details of the Legionella infection strategy and demonstrating the potential of this method to greatly advance our understanding of the molecular basis of infection.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chromatography, Affinity/methods , Legionella pneumophila/metabolism , Membrane Proteins/metabolism , Vacuoles/microbiology , rab GTP-Binding Proteins/metabolism , Animals , Bacterial Proteins/genetics , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , HeLa Cells , Histidine , Host-Pathogen Interactions , Humans , Intracellular Membranes/metabolism , Legionella pneumophila/genetics , Mass Spectrometry , Membrane Proteins/chemistry , Membrane Proteins/genetics , Microscopy, Electron, Transmission , Models, Molecular , Oligopeptides , Protein Transport , Vacuoles/metabolism
20.
Nat Commun ; 5: 5887, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25523213

ABSTRACT

The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.


Subject(s)
Adenosine Diphosphate/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Infections/enzymology , Escherichia coli Proteins/metabolism , src-Family Kinases/metabolism , Adenosine Diphosphate/genetics , Amino Acid Motifs , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Humans , Phosphorylation , Protein Processing, Post-Translational , Receptors, IgG/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL