Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Publication year range
1.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37220746

ABSTRACT

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Subject(s)
Antifungal Agents , Candidiasis , Animals , Mice , Complement C5/metabolism , Phagocytes/metabolism
2.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34129837

ABSTRACT

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Subject(s)
Immunity, Mucosal , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Neutrophils/cytology , Adult , Epithelial Cells/cytology , Gene Expression Regulation , Genetic Predisposition to Disease , Gingiva/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Microbiota , Myeloid Cells/cytology , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology , Single-Cell Analysis , Stromal Cells/cytology , T-Lymphocytes/cytology
3.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38513665

ABSTRACT

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Subject(s)
Interleukin-23 , Periodontitis , Humans , Epithelial Cells , Inflammation , Toll-Like Receptor 5/metabolism
4.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677292

ABSTRACT

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Glycolysis , Immunity, Innate , Lymphocytes , Mice, Knockout , Animals , Mice , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Hexokinase/metabolism , Hexokinase/genetics , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Interleukin-17/metabolism , Adaptation, Physiological/immunology
5.
Nat Immunol ; 20(1): 40-49, 2019 01.
Article in English | MEDLINE | ID: mdl-30455459

ABSTRACT

Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.


Subject(s)
Carrier Proteins/metabolism , Inflammation/immunology , Macrophages/physiology , Neutrophils/immunology , Periodontitis/immunology , Adult , Animals , Calcium-Binding Proteins , Carrier Proteins/genetics , Cell Adhesion Molecules , Cellular Reprogramming , Cytokines/metabolism , Gene Expression Regulation , Humans , Inflammation/chemically induced , Intercellular Signaling Peptides and Proteins , K562 Cells , Liver X Receptors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis
6.
Immunity ; 52(3): 513-527.e8, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187519

ABSTRACT

Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity.


Subject(s)
Complement C3/immunology , Integrins/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Lymphocytes/immunology , Monocytes/immunology , Transendothelial and Transepithelial Migration/immunology , Adult , Aged , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Child , Child, Preschool , Complement C3/genetics , Complement C3/metabolism , Female , Humans , Integrins/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Lymphocytes/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Monocytes/metabolism , Signal Transduction/immunology
7.
Immunol Rev ; 314(1): 125-141, 2023 03.
Article in English | MEDLINE | ID: mdl-36404627

ABSTRACT

Mucosal tissues are constantly exposed to the outside environment. They receive signals from the commensal microbiome and tissue-specific triggers including alimentary and airborne elements and are tasked to maintain balance in the absence of inflammation and infection. Here, we present neutrophils as sentinel cells in mucosal immunity. We discuss the roles of neutrophils in mucosal homeostasis and overview clinical susceptibilities in patients with neutrophil defects. Finally, we present concepts related to specification of neutrophil responses within specific mucosal tissue microenvironments.


Subject(s)
Microbiota , Neutrophils , Humans , Immunity, Mucosal , Mucous Membrane , Inflammation
8.
Immunity ; 46(1): 133-147, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28087239

ABSTRACT

Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.


Subject(s)
Gingiva/immunology , Immunity, Mucosal/immunology , Immunologic Surveillance/immunology , Mouth Mucosa/immunology , Th17 Cells/immunology , Animals , Flow Cytometry , Gingiva/microbiology , Humans , Mastication , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota , Mouth Mucosa/microbiology , Real-Time Polymerase Chain Reaction
9.
J Clin Periodontol ; 51(4): 464-473, 2024 04.
Article in English | MEDLINE | ID: mdl-38185798

ABSTRACT

AIM: WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS: Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS: Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS: Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.


Subject(s)
Immunologic Deficiency Syndromes , Neutropenia , Periodontal Diseases , Periodontitis , Primary Immunodeficiency Diseases , Warts , Adult , Humans , Animals , Mice , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/genetics , Warts/genetics , Warts/therapy , Neutropenia/complications , Neutropenia/genetics , Periodontal Diseases/complications , Periodontal Diseases/genetics , Periodontitis/complications , Periodontitis/genetics
10.
Immunol Rev ; 287(1): 226-235, 2019 01.
Article in English | MEDLINE | ID: mdl-30565245

ABSTRACT

Periodontitis is a common human inflammatory disease. In this condition, microbiota trigger excessive inflammation in oral mucosal tissues surrounding the dentition, resulting in destruction of tooth-supporting structures (connective tissue and bone). While susceptibility factors for common forms of periodontitis are not clearly understood, studies in patients with single genetic defects reveal a critical role for tissue neutrophils in disease susceptibility. Indeed, various genetic defects in the development, egress from the bone marrow, chemotaxis, and extravasation are clearly linked to aggressive/severe periodontitis at an early age. Here, we provide an overview of genetic defects in neutrophil biology that are linked to periodontitis. In particular, we focus on the mechanisms underlying Leukocyte Adhesion Deficiency-I, the prototypic Mendelian defect of impaired neutrophil extravasation and severe periodontitis.


Subject(s)
Immunologic Deficiency Syndromes/genetics , L-Selectin/genetics , Mutation/genetics , Neutrophils/physiology , Periodontitis/genetics , Animals , Cell Differentiation , Chemotaxis , Humans , Immunologic Deficiency Syndromes/immunology , Periodontitis/immunology
11.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Article in English | MEDLINE | ID: mdl-35868845

ABSTRACT

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Subject(s)
Hereditary Autoinflammatory Diseases , NF-kappa B , Protein Kinases/genetics , Amyloidosis , Animals , Cohort Studies , Gain of Function Mutation , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammation/genetics , Mice , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Kinases/metabolism , Quality of Life , Serum Amyloid A Protein , Syndrome , Tumor Necrosis Factor Inhibitors
12.
Blood ; 134(3): 291-303, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31101623

ABSTRACT

Efficient migration of macrophages to sites of inflammation requires cell surface-bound plasmin(ogen). Here, we investigated the mechanisms underlying the deficits of plasmin(ogen)-mediated macrophage migration in 2 models: murine thioglycollate-induced peritonitis and in vitro macrophage migration. As previously reported, macrophage migration into the peritoneal cavity of mice in response to thioglycollate was significantly impaired in the absence of plasminogen. Fibrin(ogen) deposition was noted in the peritoneal cavity in response to thioglycollate, with a significant increase in fibrin(ogen) in the plasminogen-deficient mice. Interestingly, macrophage migration was restored in plasminogen-deficient mice by simultaneous imposition of fibrinogen deficiency. Consistent with this in vivo finding, chemotactic migration of cultured macrophages through a fibrin matrix did not occur in the absence of plasminogen. The macrophage requirement for plasmin-mediated fibrinolysis, both in vivo and in vitro, was negated by deletion of the major myeloid integrin αMß2-binding motif on the γ chain of fibrin(ogen). The study identifies a critical role of fibrinolysis in macrophage migration, presumably through the alleviation of migratory constraints imposed by the interaction of leukocytes with fibrin(ogen) through the integrin αMß2 receptor.


Subject(s)
Chemotaxis, Leukocyte , Fibrinolysin/metabolism , Fibrinolysis , Inflammation/etiology , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Animals , Biomarkers , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Disease Susceptibility , Fibrinogen/genetics , Fibrinogen/metabolism , Fluorescent Antibody Technique , Humans , Immunophenotyping , Inflammation/pathology , Leukocyte Count , Mice , Mice, Knockout , Plasminogen/deficiency , Protein Binding , Protein Interaction Domains and Motifs , RAW 264.7 Cells
13.
Trends Immunol ; 39(4): 276-287, 2018 04.
Article in English | MEDLINE | ID: mdl-28923364

ABSTRACT

The oral mucosal barrier is constantly exposed to a plethora of triggers requiring immune control, including a diverse commensal microbiome, ongoing damage from mastication, and dietary and airborne antigens. However, how these tissue-specific cues participate in the training of immune responsiveness at this site is minimally understood. Moreover, the mechanisms mediating homeostatic immunity at this interface are not yet fully defined. Here we present basic aspects of the oral mucosal barrier and discuss local cues that may modulate and train local immune responsiveness. We particularly focus on the immune cell network mediating immune surveillance at a specific oral barrier, the gingiva - a constantly stimulated and dynamic environment where homeostasis is often disrupted, resulting in the common inflammatory disease periodontitis.


Subject(s)
Immunity, Mucosal , Microbiota/immunology , Mouth/immunology , Periodontitis/immunology , Animals , Host-Parasite Interactions , Humans , Intestinal Mucosa , Organ Specificity
14.
N Engl J Med ; 376(12): 1141-1146, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28328326

ABSTRACT

A patient with leukocyte adhesion deficiency type 1 (LAD1) had severe periodontitis and an intractable, deep, nonhealing sacral wound. We had previously found a dominant interleukin-23-interleukin-17 signature at inflamed sites in humans with LAD1 and in mouse models of the disorder. Blockade of this pathway in mouse models has resulted in resolution of the immunopathologic condition. We treated our patient with ustekinumab, an antibody that binds the p40 subunit of interleukin-23 and interleukin-12 and thereby blocks the activity of these cytokines, inhibiting interleukin-23-dependent production of interleukin-17. After 1 year of therapy, our patient had resolution of his inflammatory lesions without serious infections or adverse reactions. Inhibition of interleukin-23 and interleukin-17 may have a role in the management of LAD1. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Subject(s)
Interleukin-12/antagonists & inhibitors , Interleukin-23/antagonists & inhibitors , Leukocyte-Adhesion Deficiency Syndrome/drug therapy , Ustekinumab/therapeutic use , Gingiva/pathology , Humans , Injections, Subcutaneous , Interleukin-17/metabolism , Interleukin-23/metabolism , Leukocyte-Adhesion Deficiency Syndrome/complications , Male , Periodontal Diseases/drug therapy , Periodontal Diseases/etiology , Periodontal Diseases/pathology , RNA, Messenger/metabolism , Skin Ulcer/drug therapy , Skin Ulcer/etiology , Skin Ulcer/pathology , Ustekinumab/adverse effects , Young Adult
15.
Semin Immunol ; 28(2): 146-58, 2016 04.
Article in English | MEDLINE | ID: mdl-26936034

ABSTRACT

Although historically viewed as merely anti-microbial effectors in acute infection or injury, neutrophils are now appreciated to be functionally versatile with critical roles also in chronic inflammation. Periodontitis, a chronic inflammatory disease that destroys the tooth-supporting gums and bone, is particularly affected by alterations in neutrophil numbers or function, as revealed by observations in monogenic disorders and relevant mouse models. Besides being a significant debilitating disease and health burden in its own right, periodontitis is thus an attractive model to dissect uncharted neutrophil-associated (patho)physiological pathways. Here, we summarize recent evidence that neutrophils can contribute to inflammatory bone loss not only through the typical bystander injury dogma but intriguingly also through their absence from the affected tissue, where they normally perform important immunomodulatory functions. Moreover, we discuss recent advances in the interactions of neutrophils with the vascular endothelium and - upon extravasation - with bacteria, and how the dysregulation of these interactions leads to inflammatory tissue damage. Overall, neutrophils have both protective and destructive roles in periodontitis, as they are involved in both the maintenance of periodontal tissue homeostasis and the induction of inflammatory bone loss. This highlights the importance of developing approaches that promote or sustain a fine balance between homeostatic immunity and inflammatory pathology.


Subject(s)
Bone Resorption/etiology , Bone Resorption/metabolism , Inflammation/complications , Neutrophils/immunology , Neutrophils/metabolism , Alveolar Bone Loss/etiology , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/pathology , Animals , Bone Resorption/pathology , Cell Adhesion/immunology , Cell Communication/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunomodulation , Inflammation/etiology , Inflammation/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Neutrophil Activation/immunology , Neutrophil Infiltration/immunology , Neutrophils/pathology , Periodontitis/etiology , Periodontitis/metabolism , Periodontitis/pathology
16.
Biol Blood Marrow Transplant ; 23(6): 980-990, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28288951

ABSTRACT

Dedicator-of-cytokinesis 8 (DOCK8) deficiency, a primary immunodeficiency disease, can be reversed by allogeneic hematopoietic stem cell transplantation (HSCT); however, there are few reports describing the use of alternative donor sources for HSCT in DOCK8 deficiency. We describe HSCT for patients with DOCK8 deficiency who lack a matched related or unrelated donor using bone marrow from haploidentical related donors and post-transplantation cyclophosphamide (PT/Cy) for graft-versus-host disease (GVHD) prophylaxis. Seven patients with DOCK8 deficiency (median age, 20 years; range, 7 to 25 years) received a haploidentical related donor HSCT. The conditioning regimen included 2 days of low-dose cyclophosphamide, 5 days of fludarabine, 3 days of busulfan, and 200 cGy total body irradiation. GVHD prophylaxis consisted of PT/Cy 50 mg/kg/day on days +3 and +4 and tacrolimus and mycophenolate mofetil starting at day +5. The median times to neutrophil and platelet engraftment were 15 and 19 days, respectively. All patients attained >90% donor engraftment by day +30. Four subjects developed acute GVHD (1 with maximum grade 3). No patient developed chronic GVHD. With a median follow-up time of 20.6 months (range, 9.5 to 31.7 months), 6 of 7 patients are alive and disease free. Haploidentical related donor HSCT with PT/Cy represents an effective therapeutic approach for patients with DOCK8 deficiency who lack a matched related or unrelated donor.


Subject(s)
Guanine Nucleotide Exchange Factors/deficiency , Hematopoietic Stem Cell Transplantation/methods , Immunologic Deficiency Syndromes/therapy , Cyclophosphamide/therapeutic use , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/mortality , Humans , Immunologic Deficiency Syndromes/mortality , Survival Rate , Transplantation Conditioning/methods , Transplantation, Haploidentical/methods , Transplantation, Haploidentical/mortality , Treatment Outcome
17.
PLoS Pathog ; 11(3): e1004698, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25741691

ABSTRACT

Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of ß2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.


Subject(s)
Leukocyte-Adhesion Deficiency Syndrome/immunology , Leukocytes/immunology , Periodontitis/microbiology , Porphyromonas gingivalis , Animals , DNA, Bacterial/genetics , DNA, Bacterial/immunology , Dental Plaque/genetics , Humans , Interleukin-23/metabolism , Leukocyte-Adhesion Deficiency Syndrome/metabolism , Leukocyte-Adhesion Deficiency Syndrome/therapy , Mice , Microbiota/immunology , RNA, Ribosomal, 16S/genetics
18.
Microb Pathog ; 94: 21-6, 2016 May.
Article in English | MEDLINE | ID: mdl-26375893

ABSTRACT

Leukocyte adhesion deficiency Type I (LAD-I)-associated periodontitis is an aggressive form of inflammatory bone loss that has been historically attributed to lack of neutrophil surveillance of the periodontal infection. However, this form of periodontitis has proven unresponsive to antibiotics and/or mechanical removal of the tooth-associated biofilm. Recent studies in LAD-I patients and relevant animal models have shown that the fundamental cause of LAD-I periodontitis involves dysregulation of a granulopoietic cytokine cascade. This cascade includes interleukin IL-23 (IL-23) and IL-17 that drive inflammatory bone loss in LAD-I patients and animal models and, moreover, foster a nutritionally favorable environment for bacterial growth and development of a compositionally unique microbiome. Although the lack of neutrophil surveillance in the periodontal pockets might be expected to lead to uncontrolled bacterial invasion of the underlying connective tissue, microbiological analyses of gingival biopsies from LAD-I patients did not reveal tissue-invasive infection. However, bacterial lipopolysaccharide was shown to translocate into the lesions of LAD-I periodontitis. It is concluded that the bacteria serve as initial triggers for local immunopathology through translocation of bacterial products into the underlying tissues where they unleash the dysregulated IL-23-IL-17 axis. Subsequently, the IL-23/IL-17 inflammatory response sustains and shapes a unique local microbiome which, in turn, can further exacerbate inflammation and bone loss in the susceptible host.


Subject(s)
Bacterial Physiological Phenomena , Leukocyte-Adhesion Deficiency Syndrome/microbiology , Periodontitis/microbiology , Alveolar Bone Loss/immunology , Alveolar Bone Loss/microbiology , Alveolar Bone Loss/pathology , Animals , Gingiva/immunology , Gingiva/microbiology , Gingiva/pathology , Humans , Interleukin-17/immunology , Interleukin-23/immunology , Leukocyte-Adhesion Deficiency Syndrome/immunology , Leukocyte-Adhesion Deficiency Syndrome/pathology , Lipopolysaccharides , Neutrophils/immunology , Periodontitis/diagnostic imaging , Periodontitis/immunology , Periodontitis/pathology , Radiography, Panoramic
19.
Biol Blood Marrow Transplant ; 21(6): 1037-45, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25636378

ABSTRACT

We performed allogeneic hematopoietic stem cell transplantation in 6 patients with mutations in the dedicator-of-cytokinesis-8 (DOCK8) gene using a myeloablative conditioning regimen consisting of busulfan 3.2 mg/kg/day i.v. for 4 days and fludarabine 40 mg/m(2)/day for 4 days. Three patients received allografts from matched related donors and 3 patients from matched unrelated donors. Two patients received peripheral blood stem cells and 4 patients bone marrow hematopoietic stem cells. Tacrolimus and short-course methotrexate on days 1, 3, 6, and 11 were used for graft-versus-host-disease (GVHD) prophylaxis. All 6 patients are alive at a median follow-up of 22.5 months (range, 14 to 35). All patients achieved rapid and high levels of donor engraftment and complete reversal of the clinical and immunologic phenotype. Adverse events consisted of acute skin GVHD in 2 patients and post-transplant pulmonary infiltrates in a patient with extensive bronchiectasis pretransplant. Thus, a uniform myeloablative conditioning regimen followed by allogeneic hematopoietic stem cell transplantation in DOCK8 deficiency results in reconstitution of immunologic function and reversal of the clinical phenotype with a low incidence of regimen-related toxicity.


Subject(s)
Graft vs Host Disease/prevention & control , Guanine Nucleotide Exchange Factors/deficiency , Hematopoietic Stem Cell Transplantation , Immunosuppressive Agents/therapeutic use , Myeloablative Agonists/therapeutic use , Severe Combined Immunodeficiency/therapy , Adolescent , Adult , Busulfan/therapeutic use , Child , Female , Graft Survival , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Histocompatibility Testing , Humans , Immunophenotyping , Male , Methotrexate/therapeutic use , Mutation , Pilot Projects , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , Siblings , Tacrolimus/therapeutic use , Transplantation Conditioning/methods , Transplantation, Homologous , Unrelated Donors , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
20.
Exp Mol Med ; 56(5): 1055-1065, 2024 May.
Article in English | MEDLINE | ID: mdl-38689085

ABSTRACT

Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.


Subject(s)
Extracellular Traps , Neutrophils , Oral Health , Extracellular Traps/metabolism , Extracellular Traps/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , Periodontitis/immunology , Periodontitis/pathology , Periodontitis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL