Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Acta Neuropathol ; 134(3): 459-473, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28638989

ABSTRACT

Cerebral white matter lesions (WML) encompass axonal loss and demyelination, and the pathogenesis is assumed to be small vessel disease (SVD)-related ischemia. However, WML may also result from the activation of Wallerian degeneration as a consequence of cortical Alzheimer's disease (AD) pathology, i.e. hyperphosphorylated tau (HPτ) and amyloid-beta (Aß) deposition. WML seen in AD have a posterior predominance compared to non-demented individuals but it is unclear whether the pathological and molecular signatures of WML differ between these two groups. We investigated differences in the composition and aetiology of parietal WML from AD and non-demented controls. Parietal WML tissue from 55 human post-mortem brains (AD, n = 27; non-demented controls, n = 28) were quantitatively assessed for axonal loss and demyelination, as well as for cortical HPτ and Aß burden and SVD. Biochemical assessment included Wallerian degeneration protease calpain and the myelin-associated glycoprotein (MAG) to proteolipid protein (PLP) ratio (MAG:PLP) as a measure of hypoperfusion. WML severity was associated with both axonal loss and demyelination in AD, but only with demyelination in controls. Calpain was significantly increased in WML tissue in AD, whereas MAG:PLP was significantly reduced in controls. Calpain levels were associated with increasing amounts of cortical AD-pathology but not SVD. We conclude that parietal WML seen in AD differ in their pathological composition and aetiology compared to WML seen in aged controls: WML seen in AD may be associated with Wallerian degeneration that is triggered by cortical AD-pathology, whereas WML in aged controls are due to ischaemia. Hence, parietal WML as seen on MRI should not invariably be interpreted as a surrogate biomarker for SVD as they may be indicative of cortical AD-pathology, and therefore, AD should also be considered as the main underlying cause for cognitive impairment in cases with parietal WML.


Subject(s)
Alzheimer Disease/pathology , Cerebral Small Vessel Diseases/pathology , Nerve Degeneration/pathology , Parietal Lobe/pathology , White Matter/pathology , Aged , Aged, 80 and over , Alzheimer Disease/complications , Cerebral Small Vessel Diseases/complications , Female , Humans , Male , Nerve Degeneration/complications
2.
Int J Pharm ; 621: 121780, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35504427

ABSTRACT

Treatment for CNS related diseases are limited by the difficulty of the drugs to cross the blood-brain barrier (BBB). The functionalization of polymeric nanoparticles (NPs) coated with the surfactants polysorbate 80 (PS80) and poloxamer 188 (P188), have shown promising results as drugs carriers are able to cross the BBB on animal models. In this study, poly(lactide-co-glycolide) (PLGA) NPs coated with PS80 and P188, labelled with a fluorescent dye were tested on human pre-clinical in vitro model to evaluate and compare their uptake profiles, mechanisms of transport and crossing over human brain-like endothelial cells (BLECs) mimicking the human BBB. In addition, these NPs were produced using a method facilitating their reproducible production at high scale, the MicroJet reactor® technology. Results showed that both formulations were biocompatible and able to be internalized within the BLECs in different uptake profiles depending on their coating: P188 NP showed higher internalization capacity than PS80 NP. Both NPs uptakes were ATP-dependent, following more than one endocytosis pathway with colocalization in the early endosomes, ending with a NPs release in the brain compartment. Thus, both surfactant-coated PLGA NPs are interesting formulations for delivery to the brain through the BBB, presenting different uptake profiles.


Subject(s)
Nanoparticles , Pulmonary Surfactants , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Drug Carriers/metabolism , Endothelial Cells/metabolism , Excipients/metabolism , Humans , Poloxamer/metabolism , Polysorbates , Pulmonary Surfactants/metabolism , Surface-Active Agents/metabolism
3.
Pharmaceutics ; 13(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208550

ABSTRACT

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood-brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.

4.
Cancers (Basel) ; 12(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32045987

ABSTRACT

Colorectal cancer treatment has advanced over the past decade. The drug 5-fluorouracil is still used with a wide percentage of patients who do not respond. Therefore, a challenge is the identification of predictive biomarkers. The protein kinase R (PKR also called EIF2AK2) and its regulator, the non-coding pre-mir-nc886, have multiple effects on cells in response to numerous types of stress, including chemotherapy. In this work, we performed an ambispective study with 197 metastatic colon cancer patients with unresectable metastases to determine the relative expression levels of both nc886 and PKR by qPCR, as well as the location of PKR by immunohistochemistry in tumour samples and healthy tissues (plasma and colon epithelium). As primary end point, the expression levels were related to the objective response to first-line chemotherapy following the response evaluation criteria in solid tumours (RECIST) and, as the second end point, with survival at 18 and 36 months. Hierarchical agglomerative clustering was performed to accommodate the heterogeneity and complexity of oncological patients' data. High expression levels of nc886 were related to the response to treatment and allowed to identify clusters of patients. Although the PKR mRNA expression was not associated with chemotherapy response, the absence of PKR location in the nucleolus was correlated with first-line chemotherapy response. Moreover, a relationship between survival and the expression of both PKR and nc886 in healthy tissues was found. Therefore, this work evaluated the best way to analyse the potential biomarkers PKR and nc886 in order to establish clusters of patients depending on the cancer outcomes using algorithms for complex and heterogeneous data.

SELECTION OF CITATIONS
SEARCH DETAIL