Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Death Discov ; 10(1): 339, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060287

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs) are cancers that arise in the mucosa of the upper aerodigestive tract. The five-year patient survival rate is ~50%. Treatment includes surgery, radiation, and/or chemotherapy and is associated with lasting effects even when successful in irradicating the disease. New molecular targets and therapies must be identified to improve outcomes for HNSCC patients. We recently identified bitter taste receptors (taste family 2 receptors, or T2Rs) as a novel candidate family of receptors that activate apoptosis in HNSCC cells through mitochondrial Ca2+ overload and depolarization. We hypothesized that targeting another component of tumor cell metabolism, namely glycolysis, may increase the efficacy of T2R-directed therapies. GLUT1 (SLC2A1) is a facilitated-diffusion glucose transporter expressed by many cancer cells to fuel their increased rates of glycolysis. GLUT1 is already being investigated as a possible cancer target, but studies in HNSCCs are limited. Examination of immortalized HNSCC cells, patient samples, and The Cancer Genome Atlas revealed high expression of GLUT1 and upregulation in some patient tumor samples. HNSCC cells and tumor tissue express GLUT1 on the plasma membrane and within the cytoplasm (perinuclear, likely co-localized with the Golgi apparatus). We investigated the effects of a recently developed small molecule inhibitor of GLUT1, BAY-876. This compound decreased HNSCC glucose uptake, viability, and metabolism and induced apoptosis. Moreover, BAY-876 had enhanced effects on apoptosis when combined at low concentrations with T2R bitter taste receptor agonists. Notably, BAY-876 also decreased TNFα-induced IL-8 production, indicating an additional mechanism of possible tumor-suppressive effects. Our study demonstrates that targeting GLUT1 via BAY-876 to kill HNSCC cells, particularly in combination with T2R agonists, is a potential novel treatment strategy worth exploring further in future translational studies.

2.
Cell Rep ; 42(12): 113437, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37995679

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs) have high mortality and significant treatment-related morbidity. It is vital to discover effective, minimally invasive therapies that improve survival and quality of life. Bitter taste receptors (T2Rs) are expressed in HNSCCs, and T2R activation can induce apoptosis. Lidocaine is a local anesthetic that also activates bitter taste receptor 14 (T2R14). Lidocaine has some anti-cancer effects, but the mechanisms are unclear. Here, we find that lidocaine causes intracellular Ca2+ mobilization through activation of T2R14 in HNSCC cells. T2R14 activation with lidocaine depolarizes mitochondria, inhibits proliferation, and induces apoptosis. Concomitant with mitochondrial Ca2+ influx, ROS production causes T2R14-dependent accumulation of poly-ubiquitinated proteins, suggesting that proteasome inhibition contributes to T2R14-induced apoptosis. Lidocaine may have therapeutic potential in HNSCCs as a topical gel or intratumor injection. In addition, we find that HPV-associated (HPV+) HNSCCs are associated with increased TAS2R14 expression. Lidocaine treatment may benefit these patients, warranting future clinical studies.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Humans , Taste/physiology , Receptors, G-Protein-Coupled/metabolism , Squamous Cell Carcinoma of Head and Neck , Lidocaine/pharmacology , Quality of Life , Head and Neck Neoplasms/drug therapy , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL