Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Phys Chem A ; 126(5): 733-741, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35084863

ABSTRACT

Perylene diimide (PDI) represents a prototype material for organic optoelectronic devices because of its strong optical absorbance, chemical stability, efficient energy transfer, and optical and chemical tunability. Herein, we analyze in detail the vibronic relaxation of its photoexcitation using nonadiabatic excited-state molecular dynamics simulations. We find that after the absorption of a photon, which excites the electron to the second excited state, S2, induced vibronic dynamics features persistent modulations in the spatial localization of electronic and vibrational excitations. These energy exchanges are dictated by strong vibronic couplings that overcome structural disorders and thermal fluctuations. Specifically, the electronic wavefunction periodically swaps between localizations on the right and left sides of the molecule. Within 1 ps of such dynamics, a nonradiative transition to the lowest electronic state, S1, takes place, resulting in a complete delocalization of the wavefunction. The observed vibronic dynamics emerges following the electronic energy deposition in the direction that excites a combination of two dominant vibrational normal modes. This behavior is maintained even with a chemical substitution that breaks the symmetry of the molecule. We believe that our findings elucidate the nature of the complex dynamics of the optically excited states and, therefore, contribute to the development of tunable functionalities of PDIs and their derivatives.

2.
J Phys Chem A ; 124(16): 3055-3063, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32049528

ABSTRACT

π-stacked organic electronic materials are tunable light absorbers with many potential applications in optoelectronics. The optical properties of such molecules are highly dependent on the nature and energy of electron-hole pairs or excitons formed upon light absorption, which in turn are determined by intra- and intermolecular electronic and vibrational excitations. Here, we present a first-principles approach for describing the optical spectrum of stacked organic molecules with strong vibronic coupling. For stacked perylene tetracarboxylic acid diimides, we describe optical excitations by using the time-dependent density functional theory with a Franck-Condon Herzberg-Teller approximation of vibronic effects and validate our approach with comparison to experimental ultraviolet-visible (UV-vis) absorption measurements of solvated model systems. We determine that for larger macromolecules, unlike for single molecules, the sampling of the ground-state potential energy surface significantly influences the optical absorption spectrum. We account for this effect by applying our analysis to ∼100 structures extracted from equilibrated molecular dynamics simulations and averaging the optical spectrum over the entire ensemble. Additionally, we demonstrate that intermolecular electronic coupling within the stacks results in multiple low-energy electronically excited states that all contribute to the optical spectrum. This study provides a computationally feasible recipe for describing the spectroscopic properties of stacked organic chromophores via first-principles density functional theory.

3.
J Chem Phys ; 153(24): 244117, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33380092

ABSTRACT

We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.

4.
Nat Commun ; 14(1): 8528, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135683

ABSTRACT

Multifunctional platforms that can dynamically modulate their color and appearance have attracted attention for applications as varied as displays, signaling, camouflage, anti-counterfeiting, sensing, biomedical imaging, energy conservation, and robotics. Within this context, the development of camouflage systems with tunable spectroscopic and fluorescent properties that span the ultraviolet, visible, and near-infrared spectral regions has remained exceedingly challenging because of frequently competing materials and device design requirements. Herein, we draw inspiration from the unique blue rings of the Hapalochlaena lunulata octopus for the development of deception and signaling systems that resolve these critical challenges. As the active material, our actuator-type systems incorporate a readily-prepared and easily-processable nonacene-like molecule with an ambient-atmosphere stability that exceeds the state-of-the-art for comparable acenes by orders of magnitude. Devices from this active material feature a powerful and unique combination of advantages, including straightforward benchtop fabrication, competitive baseline performance metrics, robustness during cycling with the capacity for autonomous self-repair, and multiple dynamic multispectral operating modes. When considered together, the described exciting discoveries point to new scientific and technological opportunities in the areas of functional organic materials, reconfigurable soft actuators, and adaptive photonic systems.

SELECTION OF CITATIONS
SEARCH DETAIL