Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Genet ; 13(9): e1007009, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28945736

ABSTRACT

Large-scale sequencing efforts have captured a rapidly growing catalogue of genetic variations. However, the accurate establishment of gene variant pathogenicity remains a central challenge in translating personal genomics information to clinical decisions. Interferon Regulatory Factor 6 (IRF6) gene variants are significant genetic contributors to orofacial clefts. Although approximately three hundred IRF6 gene variants have been documented, their effects on protein functions remain difficult to interpret. Here, we demonstrate the protein functions of human IRF6 missense gene variants could be rapidly assessed in detail by their abilities to rescue the irf6 -/- phenotype in zebrafish through variant mRNA microinjections at the one-cell stage. The results revealed many missense variants previously predicted by traditional statistical and computational tools to be loss-of-function and pathogenic retained partial or full protein function and rescued the zebrafish irf6 -/- periderm rupture phenotype. Through mRNA dosage titration and analysis of the Exome Aggregation Consortium (ExAC) database, IRF6 missense variants were grouped by their abilities to rescue at various dosages into three functional categories: wild type function, reduced function, and complete loss-of-function. This sensitive and specific biological assay was able to address the nuanced functional significances of IRF6 missense gene variants and overcome many limitations faced by current statistical and computational tools in assigning variant protein function and pathogenicity. Furthermore, it unlocked the possibility for characterizing yet undiscovered human IRF6 missense gene variants from orofacial cleft patients, and illustrated a generalizable functional genomics paradigm in personalized medicine.


Subject(s)
Cleft Palate/genetics , Interferon Regulatory Factors/genetics , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified/genetics , Cleft Palate/physiopathology , Disease Models, Animal , Humans , Mutation, Missense , Phenotype , RNA, Messenger/administration & dosage , RNA, Messenger/genetics
2.
Anesthesiology ; 131(6): 1276-1291, 2019 12.
Article in English | MEDLINE | ID: mdl-31567362

ABSTRACT

BACKGROUND: Transgenic mouse studies suggest that γ-aminobutyric acid type A (GABAA) receptors containing ß3 subunits mediate important effects of etomidate, propofol, and pentobarbital. Zebrafish, recently introduced for rapid discovery and characterization of sedative-hypnotics, could also accelerate pharmacogenetic studies if their transgenic phenotypes reflect those of mammals. The authors hypothesized that, relative to wild-type, GABAA-ß3 functional knock-out (ß3) zebrafish would show anesthetic sensitivity changes similar to those of ß3 mice. METHODS: Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mutagenesis was used to create a ß3 zebrafish line. Wild-type and ß3 zebrafish were compared for fertility, growth, and craniofacial development. Sedative and hypnotic effects of etomidate, propofol, pentobarbital, alphaxalone, ketamine, tricaine, dexmedetomidine, butanol, and ethanol, along with overall activity and thigmotaxis were quantified in 7-day postfertilization larvae using video motion analysis of up to 96 animals simultaneously. RESULTS: Xenopus oocyte electrophysiology showed that the wild-type zebrafish ß3 gene encodes ion channels activated by propofol and etomidate, while the ß3 zebrafish transgene does not. Compared to wild-type, ß3 zebrafish showed similar morphology and growth, but more rapid swimming. Hypnotic EC50s (mean [95% CI]) were significantly higher for ß3 versus wild-type larvae with etomidate (1.3 [1.0 to 1.6] vs. 0.6 [0.5 to 0.7] µM; P < 0.0001), propofol (1.1 [1.0 to 1.4] vs. 0.7 [0.6 to 0.8] µM; P = 0.0005), and pentobarbital (220 [190 to 240] vs. 130 [94 to 179] µM; P = 0.0009), but lower with ethanol (150 [106 to 213] vs. 380 [340 to 420] mM; P < 0.0001) and equivalent with other tested drugs. Comparing ß3 versus wild-type sedative EC50s revealed a pattern similar to hypnosis. CONCLUSIONS: Global ß3 zebrafish are selectively insensitive to the same few sedative-hypnotics previously reported in ß3 transgenic mice, indicating phylogenetic conservation of ß3-containing GABAA receptors as anesthetic targets. Transgenic zebrafish are potentially valuable models for sedative-hypnotic mechanisms research.


Subject(s)
Anesthetics/administration & dosage , Hypnotics and Sedatives/administration & dosage , Locomotion/drug effects , Locomotion/genetics , Receptors, GABA-A/deficiency , Receptors, GABA-A/genetics , Animals , Animals, Genetically Modified , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Mice , Mice, Knockout , Mice, Transgenic , Xenopus laevis , Zebrafish
3.
Hum Mol Genet ; 25(7): 1255-70, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26758871

ABSTRACT

CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb(-/-) mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb(-/-) mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb(-/-) mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis.


Subject(s)
CapZ Actin Capping Protein/genetics , Cell Differentiation , Head/embryology , Morphogenesis , Neural Crest/embryology , Animals , Cleft Palate/genetics , Cleft Palate/metabolism , Disease Models, Animal , Female , Head/physiology , Humans , Infant , Micrognathism/genetics , Micrognathism/metabolism , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Mutation , Neural Crest/metabolism , Neural Crest/physiology , Sequence Analysis, DNA , Syndrome , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish/physiology
4.
Transgenic Res ; 27(6): 559-569, 2018 12.
Article in English | MEDLINE | ID: mdl-30353407

ABSTRACT

Zebrafish transgenic lines provide valuable insights into gene functions, cell lineages and cell behaviors during development. Spatiotemporal control over transgene expression is a critical need in many experimental approaches, with applications in loss- and gain-of-function expression, ectopic expression and lineage tracing experiments. The Cre/loxP recombination system is a powerful tool to provide this control and the demand for validated Cre and loxP zebrafish transgenics is high. One of the major challenges to widespread application of Cre/loxP technology in zebrafish is comparatively small numbers of established tissue-specific Cre or CreERT2 lines. We used Tol2-mediated transgenesis to generate Tg(CrymCherry;-1.9mylz2:CreERT2) which provides an inducible CreERT2 source driven by muscle-specific mylz2 promoter. The transgenic specifically labels the trunk and tail skeletal muscles. We assessed the temporal responsiveness of the transgenic by screening with a validated loxP reporter transgenic ubi:Switch. Further, we evaluated the recombination efficiency in the transgenic with varying concentrations of 4-OHT, for different induction time periods and at different stages of embryogenesis and observed that higher recombination efficiency is achieved when embryos are induced with 10 µM 4-OHT from 10-somites or 24 hpf till 48 or 72 hpf. The transgenic is an addition to currently available zebrafish transgenesis toolbox and a significant tool to advance muscle biology studies in zebrafish.


Subject(s)
Embryo, Nonmammalian/metabolism , Integrases/metabolism , Muscles/metabolism , Transgenes , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Embryo, Nonmammalian/cytology , Gene Expression Regulation, Developmental , Integrases/genetics , Muscles/cytology , Zebrafish/growth & development , Zebrafish/metabolism
5.
Dev Dyn ; 246(11): 897-914, 2017 11.
Article in English | MEDLINE | ID: mdl-28795449

ABSTRACT

Zebrafish is a model organism that affords experimental advantages toward investigating the normal function of genes associated with congenital birth defects. Here we summarize zebrafish studies of genes implicated in orofacial cleft (OFC). The most common use of zebrafish in this context has been to explore the normal function an OFC-associated gene product in craniofacial morphogenesis by inhibiting expression of its zebrafish ortholog. The most frequently deployed method has been to inject embryos with antisense morpholino oligonucleotides targeting the desired transcript. However, improvements in targeted mutagenesis strategies have led to widespread adoption of CRISPR/Cas9 technology. A second application of zebrafish has been for functional assays of gene variants found in OFC patients; such in vivo assays are valuable because the success of in silico methods for testing allele severity has been mixed. Finally, zebrafish have been used to test the tissue specificity of enhancers that harbor single nucleotide polymorphisms associated with risk for OFC. We review examples of each of these approaches in the context of genes that are implicated in syndromic and non-syndromic OFC. Developmental Dynamics 246:897-914, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Mouth Abnormalities/genetics , Animals , CRISPR-Cas Systems , Cleft Lip/genetics , Cleft Palate/genetics , Genetic Variation , Humans , Zebrafish/embryology , Zebrafish/genetics
6.
Plast Reconstr Surg Glob Open ; 6(3): e1633, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29707441

ABSTRACT

BACKGROUND: Craniofacial malformations are among the most common congenital anomalies. Cranial neural crest cells (CNCCs) form craniofacial structures involving multiple cellular processes, perturbations of which contribute to craniofacial malformations. Adhesion of cells to the extracellular matrix mediates bidirectional interactions of the cells with their extracellular environment that plays an important role in craniofacial morphogenesis. Talin (tln) is crucial in cell-matrix adhesion between cells, but its role in craniofacial morphogenesis is poorly understood. METHODS: Talin gene expression was determined by whole mount in situ hybridization. Craniofacial cartilage and muscles were analyzed by Alcian blue in Tg(mylz2:mCherry) and by transmission electron microscopy. Pulse-chase photoconversion, 5-ethynyl-2'-deoxyuridine proliferation, migration, and apoptosis assays were performed for functional analysis. RESULTS: Expression of tln1 was observed in the craniofacial cartilage structures, including the palate. The Meckel's cartilage was hypoplastic, the palate was shortened, and the craniofacial muscles were malformed in tln1 mutants. Pulse-chase and EdU assays during palate morphogenesis revealed defects in CNCC proliferation in mutants. No defects were observed in CNCC migration and apoptosis. CONCLUSIONS: The work shows that tln1 is critical for craniofacial morphogenesis in zebrafish. Loss of tln1 leads to a shortened palate and Meckel's cartilage along with disorganized skeletal muscles. Investigations into the cellular processes show that tln1 is required for CNCC proliferation during palate morphogenesis. The work will lead to a better understanding of the involvement of cytoskeletal proteins in craniofacial morphogenesis.

7.
Trends Pharmacol Sci ; 42(6): 417-425, 2021 06.
Article in English | MEDLINE | ID: mdl-33902948
8.
Trends Pharmacol Sci ; 41(10): 679-680, 2020 10.
Article in English | MEDLINE | ID: mdl-32946771
12.
G3 (Bethesda) ; 3(4): 657-664, 2013 04 09.
Article in English | MEDLINE | ID: mdl-23550125

ABSTRACT

Gene targeting is the term commonly applied to experimental gene replacement by homologous recombination (HR). This process is substantially stimulated by a double-strand break (DSB) in the genomic target. Zinc-finger nucleases (ZFNs) are targetable cleavage reagents that provide an effective means of introducing such a break in conjunction with delivery of a homologous donor DNA. In this study we explored several parameters of donor DNA structure during ZFN-mediated gene targeting in Drosophila melanogaster embryos, as follows. 1) We confirmed that HR outcomes are enhanced relative to the alternative nonhomologous end joining (NHEJ) repair pathway in flies lacking DNA ligase IV. 2) The minimum amount of homology needed to support efficient HR in fly embryos is between 200 and 500 bp. 3) Conversion tracts are very broad in this system: donor sequences more than 3 kb from the ZFN-induced break are found in the HR products at approximately 50% of the frequency of a marker at the break. 4) Deletions carried by the donor DNA are readily incorporated at the target. 5) While linear double-stranded DNAs are not effective as donors, single-stranded oligonucleotides are. These observations should enable better experimental design for gene targeting in Drosophila and help guide similar efforts in other systems.

SELECTION OF CITATIONS
SEARCH DETAIL