Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
Add more filters

Publication year range
1.
J Am Chem Soc ; 146(36): 24901-24910, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39197147

ABSTRACT

The effect of host-guest interactions on the chemistry of encapsulated molecules is a fascinating field of research that has gained momentum in recent years. Much of the work in this field has been focused on the effect of such interactions on catalysis and photoluminescence of encapsulated dyes. However, the effect of such interactions on related photoinduced processes, such as photoregulated oxidase-mimicking activity, has not been explored much. Herein, we report a unique example of enhancement of oxidase-like activity of a benzothiadiazole dye (G1) in water through encapsulation within a M8L4 molecular barrel (1). Favorable host-guest interactions helped the encapsulated guest G1 to have better photoinduced electron transfer to molecular oxygen leading to increased production of superoxide radical anions and oxidase-like activity. Furthermore, encapsulation inside 1 also caused a change in the redox potentials of the guest (G1) which after photoinduced electron transfer produced a better oxidizing agent than free G1. These phenomena combined to enhance the oxidase-like activity of dye G1 upon encapsulation inside cage 1. The present report demonstrates a unique effect of host-guest chemistry on photoregulated processes.


Subject(s)
Coloring Agents , Oxidoreductases , Thiadiazoles , Water , Thiadiazoles/chemistry , Water/chemistry , Coloring Agents/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Molecular Structure , Oxidation-Reduction
2.
J Am Chem Soc ; 146(22): 15301-15308, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785321

ABSTRACT

Designing supramolecular architectures with uncommon geometries has always been a key goal in the field of metal-ligand coordination-driven self-assembly. It acquires added significance if functional building units are employed in constructing such architectures for fruitful applications. In this report, we address both these aspects by developing a water-soluble Pd16L8 coordination cage 1 with an unusual square orthobicupola geometry, which was used for selective aerobic oxidation of aryl sulfides. Self-assembly of a benzothiadiazole-based tetra-pyridyl donor L with a ditopic cis-[(tmeda)Pd(NO3)2] acceptor [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine] produced 1, and the geometry was determined by single-crystal X-ray diffraction study. Unlike the typically observed tri- or tetrafacial barrel, the present Pd16L8 coordination assembly features a distinctive structural topology and is a unique example of a water-soluble molecular architecture with a square orthobicupola geometry. Efficient and selective aerobic oxidation of sulfides to sulfoxides is an important challenge as conventional oxidation generally leads to the formation of sulfoxide along with toxic sulfone. Cage 1, designed with a ligand containing a benzothiadiazole moiety, demonstrates an ability to photogenerate reactive oxygen species (ROS) in water, thus enabling it to serve as a potential photocatalyst. The cage showed excellent catalytic efficiency for highly selective conversion of alkyl and aryl sulfides to their corresponding sulfoxides, therefore without the formation of toxic sulfones and other byproducts, under visible light in aqueous medium.

3.
Chemistry ; 30(10): e202303101, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38116855

ABSTRACT

Developing luminescent materials that exhibit strong emissions in both solution and solid phases is highly desirable and challenging. Herein, we report imine-bond directed formation of a rigid organic cage (TPE-cage) that was synthesized by [2+4] imine condensation of a TPE-cored tetra-aldehyde (TPE-TA) with a clip-like diamine (XA) to illustrate confinement-induced fluorescence enhancement. Compared to the non-emissive TPE-TA (ϕF =0.26 %) in the dichloromethane (DCM) solution, the TPE-cage achieved a remarkable (~520-fold) emission enhancement (ϕF =70.38 %). In contrast, a monomeric tetra-imine model compound (TPE-model) showed only a minor enhancement (ϕF =0.56 %) in emission compared to the parent tetra-aldehyde TPE-TA. The emission of TPE-cage was further enhanced by ~1.5-fold (ϕF =80.96 %) in the aggregated state owing to aggregation-induced emission enhancement (AIEE). This approach establishes the potential for synthesizing luminescent materials with high emission in both solution and solid-state by employing a single-step imine condensation reaction.

4.
Inorg Chem ; 63(32): 14924-14932, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129449

ABSTRACT

Research on the synthesis of catenated cages has been a growing field of interest in the past few years. While multiple types of catenated cages with different structures have been synthesized, the application of such systems has been much less explored. Specifically, the use of catenated cages in the separation of industrially relevant molecules that are present in coal tar has not been explored before. Herein, we demonstrate the use of a newly synthesized interlocked cage 1 [C184H240N76O48Pd6] (M6L4), formed through the self-assembly of ligand L.HNO3 (tris(4-(1H-imidazole-1-yl)benzylidene)hydrazine-1-carbohydrazonhydrazide) with acceptor cis-[(tmchda)Pd(NO3)2] [tmchda = ±N,N,N',N'-tetramethylcyclohexane-1,2-diamine] (M). The interlocked cage 1 was able to separate the isomers (anthracene and phenanthrene) using a simple solvent extraction technique. Using the same technique, the much more difficult separation of structurally and physiochemically similar compounds acenaphthene and acenaphthylene was performed for the first time with 1 as the host. Other noninterlocked hexanuclear Pd6 cages having a wider cavity proved inefficient for such separation, demonstrating the uniqueness of the interlocked cage 1 for such challenging separation.

5.
Inorg Chem ; 63(1): 508-517, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38117135

ABSTRACT

A new tetraphenylpyrazine-based tetraimidazole ligand (L) was synthesized and used for subcomponent self-assembly with cis-(tmeda)Pd(NO3)2 and cis-Pt(PEt3)2(OTf)2, leading to the formation of two tetrafacial barrels [Pd8L4(tmeda)8](NO3)16 (1) and [Pt8L4(PEt3)16](OTf)16 (2), respectively. Although ligand L is aggregation-induced emission (AIE) active, barrel 2 showed a magnificently higher AIE activity than ligand L, while 1 failed to retain the AIE properties of the ligand. Pd(II) barrel 1, undergoing an aggregation-caused quenching (ACQ) phenomenon, nullified the AIE activity of the ligand to be used in the photophysical application. The enhanced emission in the aggregated state of Pt(II) barrel 2 was used for the recognition of picric acid (PA), which is explosive in nature and one of the groundwater contaminants in landmine areas. The recognition of picric acid was found to be selective in comparison with that of other nitroaromatic compounds (NACs), which could be attributed to ground-state complex formation and resonance energy transfer between picric acid and barrel 2. The use of new AIE-active assembly 2 for selective detection of PA with a low detection limit is noteworthy.

6.
Inorg Chem ; 63(5): 2569-2576, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38241721

ABSTRACT

Developing sensitive, rapid, and convenient methods for the detection of residual toxic pesticides is immensely important to prevent irreversible damage to the human body. Luminescent metal-organic cages and macrocycles have shown great applications, and designing highly emissive supramolecular systems in dilute solution using metal-ligand coordination-driven self-assembly is demanded. In this study, we have demonstrated the development of a silver-carbene bond directed tetranuclear silver(I)-octacarbene metallacage [Ag4(L)2](PF6)4 (1) based on an aggregation-induced emissive (AIE) cored 1,1',1″,1‴-((1,4-phenylenebis(ethene-2,1,1-triyl))tetrakis(benzene-4,1-diyl))tetrakis(3-methyl-1H-imidazol-3-ium) salt (L). A 36-fold enhanced emission was observed after metallacage (1) formation when compared with the ligand (L) in dilute solution due to the restriction of intramolecular motions imparted by metal-ligand coordination. Such an increase in fluorescence made 1 a potential candidate for the detection of a broad-spectrum pesticide, 2,6-dichloro-nitroaniline (DCN). 1 was able to detect DCN efficiently by the fluorescence quenching method with a significant detection limit (1.64 ppm). A combination of static and dynamic quenching was applicable depending on the analyte concentration. The use of silver-carbene bond directed self-assembly to exploit coordination-induced emission as an alternative to AIE in dilute solution and then apply this approach to solve health and safety concerns is noteworthy and carries a lot of potential for future developments.

7.
Chem Rev ; 122(14): 12244-12307, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35438968

ABSTRACT

The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.


Subject(s)
Metal Nanoparticles , Metals , Catalysis , Ligands , Metals/chemistry , Porosity
8.
Angew Chem Int Ed Engl ; : e202411513, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160692

ABSTRACT

The dynamic behaviour of metal-ligand bonding cultivates stimuli-mediated structural transformations in self-assembled molecular architectures. The propensity of synthetically designed self-assembled systems to interchange between higher-order architectures is increased multi-fold when the building blocks have higher conformational degrees of freedom. Herein, we report a new ligand, (2,7-bis(di(pyridin-4-yl)amino)-9H-fluoren-9-one) (L), which, upon self-assembly with a cis-[(ethylene-1,2-diamine)Pd(NO3)2] acceptor (M), resulted in the formation of a M6L3 trifacial barrel (C1) in water. Interestingly, during crystallization, a rare M12L6 triangular orthobicupola architecture (C2) was generated along with C1. C2 could also be generated in solution via the application of several stimuli. C1 in aqueous medium could stabilize one trans-stilbene (tS) or cis-stilbene (cS) molecule in its cavity, with a selectivity for the former from their mixture. Moreover, C1 acted as an effective host to prevent the otherwise facile photoisomerization of tS to cS inside its hydrophobic cavity under UV irradiation. Conversely, the visible-light-induced reverse isomerization of encapsulated cS to encapsulated tS could be achieved readily due to the better stabilization of tS within the cavity of C1 and its transparency to visible light. A multi-functional system was therefore designed, which at the same time is stimuli-responsive, shows isomer selectivity, and photo-protects trans-stilbene.

9.
Angew Chem Int Ed Engl ; 63(18): e202401136, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38379203

ABSTRACT

The development of artificial light-harvesting systems mimicking the natural photosynthesis method is an ever-growing field of research. Numerous systems such as polymers, metal complexes, POFs, COFs, supramolecular frameworks etc. have been fabricated to accomplish more efficient energy transfer and storage. Among them, the supramolecular coordination complexes (SCCs) formed by non-covalent metal-ligand interaction, have shown the capacity to not only undergo single and multistep energy migration but also to utilize the harvested energy for a wide variety of applications such as photocatalysis, tunable emissive systems, encrypted anti-counterfeiting materials, white light emitters etc. This review sheds light on the light-harvesting behavior of both the 2D metallacycles and 3D metallacages where design ingenuity has been executed to afford energy harvesting by both donor ligands as well as metal acceptors.

10.
Angew Chem Int Ed Engl ; 63(1): e202315572, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37985377

ABSTRACT

Through coordination-driven self-assembly, aesthetically captivating structures can be formed by tuning the length or flexibility of various components. The self-assembly of an elongated rigid terphenyl-based tetra-pyridyl ligand (L1) with a cis-Pd(II) acceptor produces an [M12 L16 ]24+ triangular orthobicupola structure (1). When flexibility is introduced into the ligand by the incorporation of a -CH2 - group between the dipyridylamine and terphenyl rings in the ligand (L2), anunique [M8 L24 ]16+ water-soluble 'intertwined cubic structure' (2) results. The inherent flexibility of ligand L2 might be the key factor behind the formation of the thermodynamically stable and 'intertwined cubic structure' in this scenario. This research showcases the ability to design and fabricate novel, topologically distinctive molecular structures by a straightforward and efficient approach.

11.
Angew Chem Int Ed Engl ; 63(31): e202402214, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38745375

ABSTRACT

Aluminum oxide (Al2O3) nanopowder is spin-coated onto both sides of commercial polypropene separator to create artificial solid-electrolyte interphase (SEI) and artificial cathode electrolyte interface (CEI) in potassium metal batteries (KMBs). This significantly enhances the stability, including of KMBs with Prussian Blue (PB) cathodes. For example, symmetric cells are stable after 1,000 cycles at 0.5 mA/cm2-0.5 mAh/cm2 and 3.0 mA/cm2-0.5 mAh/cm2. Alumina modified separators promote electrolyte wetting and increase ionic conductivity (0.59 vs. 0.2 mS/cm) and transference number (0.81 vs. 0.23). Cryo-stage focused ion beam (cryo-FIB) analysis of cycled modified anode demonstrates dense and planar electrodeposits, versus unmodified baseline consisting of metal filaments (dendrites) interspersed with pores and SEI. Alumina-modified CEI also suppresses elemental Fe crossover and reduces cathode cracking. Mesoscale modeling of metal - SEI interactions captures crucial role of intrinsic heterogeneities, illustrating how artificial SEI affects reaction current distribution, conductivity and morphological stability.

12.
Angew Chem Int Ed Engl ; : e202412550, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278827

ABSTRACT

This study examines how current collector support chemistry (sodiophilic intermetallic Na2Te vs. sodiophobic baseline Cu) and electrodeposition rate affect microstructure of sodium metal and its solid electrolyte interphase (SEI). Capacity and current (6 mAh cm-2, 0.5-3 mA cm-2) representative of commercially relevant mass loading in anode-free sodium metal battery (AF-SMBs) are analyzed. Synchrotron X-ray nanotomography and grazing-incidence wide-angle X-ray scattering (GIWAXS) are combined with cryogenic focused ion beam (cryo-FIB) microscopy. Highlighted are major differences in film morphology, internal porosity, and crystallographic preferred orientation e.g. (110) vs. (100) and (211) with support and deposition rate. Within the SEI, sodium fluoride (NaF) is more prevalent with Te-Cu versus sodium hydride (NaH) and sodium hydroxide (NaOH) with baseline Cu. Due to competitive grain growth the preferred orientation of sodium crystallites depends on film thickness. Mesoscale modelling delineates the role of SEI (ionic conductivity, morphology) on electrodeposit growth and onset of electrochemical instability.

13.
J Am Chem Soc ; 145(14): 7692-7711, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36976105

ABSTRACT

Self-assembled discrete molecular architectures that show selective molecular recognition within their internal cavities are highly desirable. Such hosts often show guest recognition through several noncovalent interactions. This emulates the activity of naturally occurring enzymes and proteins. Research in the formation of 3D cages of different shapes and sizes has progressed rapidly since the development of coordination-driven self-assembly and dynamic covalent chemistry. Such molecular cages find applications in catalysis, stabilization of metastable molecules, purification of isomeric mixtures via selective encapsulation, and even in biomedical applications. Most of these applications stem from the ability of the host cages to bind guests strongly in a selective fashion, providing a suitable environment for the guests to perform their functions. Molecular cages having closed architectures with small windows either show poor encapsulation or inhibit easy guest release while those with wide open structures fail to form stable host-guest complexes. In this context, molecular barrels obtained by dynamic metal-ligand/covalent bond formation techniques possess optimized architectures. With a hollow-walled cavity and two large openings, molecular barrels satisfy the structural requirements for many applications. In this perspective, we will discuss in detail the synthetic strategies for obtaining barrels or barrel-like architectures employing dynamic coordination and covalent interactions, their structure-based classification, and their applications in catalysis, storing transient molecules, separation of chemicals, and photoinduced antibacterial activity. We aim to highlight the structural advantages of molecular barrels over other architectures for efficiently carrying out several functions and for the development of new applications.

14.
J Am Chem Soc ; 145(49): 26973-26982, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38019887

ABSTRACT

Chemical reactions inside the confined pockets of enzyme-mimicking hosts, such as cages and macrocycles, have been an emerging field of interest over the past decade. Although many such reactions are known, the use of such cages toward the divergent synthesis of nonisomeric products has not been well explored. Divergent synthesis is a technique of forming two or more distinct products from the same reagents by changing the catalyst or reaction conditions. Changing the shape of the cage can also change the nature and magnitude of the host-guest interactions. Thus, is it possible for such changes to cause differences in the reaction pathways leading to formation of nonisomeric products? Herein, we report a divergent chemical transformation of anthrone [anthracen-9(10H)-one] inside different water-soluble M6L4 cages. When anthrone was encapsulated inside a newly synthesized M6L4 octahedral cage 1, it dimerized to form dianthrone [9,9'-bianthracen-10,10'(9H,9'H)-dione]. In contrast, when the same chemical reaction was performed inside a M6L4 double-square shaped cage 2, it was oxidized to form anthraquinone [anthracene-9,10-dione]. Similar results were obtained with a different set of isomeric aqueous Pd6 cages 3a (octahedral cage) and 3b (double-square cage), indicating the dependence of the shape of cavity on the divergent synthesis. The present report demonstrates a unique example of different outcomes/results of a reaction depending on the shape of the molecular container, which was driven by the host-guest interactions and the preorganization of the substrates.

15.
Nat Mater ; 21(11): 1298-1305, 2022 11.
Article in English | MEDLINE | ID: mdl-36050382

ABSTRACT

Understanding and mitigating filament formation, short-circuit and solid electrolyte fracture is necessary for advanced all-solid-state batteries. Here, we employ a coupled far-field high-energy diffraction microscopy and tomography approach for assessing the chemo-mechanical behaviour for dense, polycrystalline garnet (Li7La3Zr2O12) solid electrolytes with grain-level resolution. In situ monitoring of grain-level stress responses reveals that the failure mechanism is stochastic and affected by local microstructural heterogeneity. Coupling high-energy X-ray diffraction and far-field high-energy diffraction microscopy measurements reveals the presence of phase heterogeneity that can alter local chemo-mechanics within the bulk solid electrolyte. These local regions are proposed to be regions with the presence of a cubic polymorph of LLZO, potentially arising from local dopant concentration variation. The coupled tomography and FF-HEDM experiments are combined with transport and mechanics modelling to illustrate the degradation of polycrystalline garnet solid electrolytes. The results showcase the pathways for processing high-performing solid-state batteries.


Subject(s)
Electric Power Supplies , Electrolytes , Electrolytes/chemistry , X-Ray Diffraction , Microscopy , Tomography, X-Ray Computed
16.
Nat Mater ; 21(2): 217-227, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34824396

ABSTRACT

Lithium-ion batteries are yet to realize their full promise because of challenges in the design and construction of electrode architectures that allow for their entire interior volumes to be reversibly accessible for ion storage. Electrodes constructed from the same material and with the same specifications, which differ only in terms of dimensions and geometries of the constituent particles, can show surprising differences in polarization, stress accumulation and capacity fade. Here, using operando synchrotron X-ray diffraction and energy dispersive X-ray diffraction (EDXRD), we probe the mechanistic origins of the remarkable particle geometry-dependent modification of lithiation-induced phase transformations in V2O5 as a model phase-transforming cathode. A pronounced modulation of phase coexistence regimes is observed as a function of particle geometry. Specifically, a metastable phase is stabilized for nanometre-sized spherical V2O5 particles, to circumvent the formation of large misfit strains. Spatially resolved EDXRD measurements demonstrate that particle geometries strongly modify the tortuosity of the porous cathode architecture. Greater ion-transport limitations in electrode architectures comprising micrometre-sized platelets result in considerable lithiation heterogeneities across the thickness of the electrode. These insights establish particle geometry-dependent modification of metastable phase regimes and electrode tortuosity as key design principles for realizing the promise of intercalation cathodes.

17.
Inorg Chem ; 62(28): 11037-11043, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37411006

ABSTRACT

A tetraphenylethylene (TPE)-based flexible imidazolium (L) salt was used to develop a di-nuclear silver(I)-tetracarbene (1) complex. Coordination-induced rigidity upon formation of 1 exhibited a 6-fold increase in emission intensity in acetonitrile compared to starting L. Despite TPE being a well-known aggregation-induced emissive moiety, AgI-N-heterocyclic carbene (NHC) complex 1 had a remarkably higher fluorescence emission (4-fold) in dilute solution when compared with L in its aggregated state. Finally, this enhanced emission was used to institute a new platform for an artificial light-harvesting system. 1 acted as an energy donor and efficiently transferred energy to Eosin Y (ESY) with a high saturation at a 67:1 (1/ESY) molar ratio. Use of rigidification-induced emission of the AgI-NHC complex to fabricate a light-harvesting scaffold is a new approach and can greatly impact the generation of smart materials.

18.
Inorg Chem ; 62(23): 9230-9239, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37263966

ABSTRACT

Phenanthrene is a high-value raw material in chemical industries. Separation of phenanthrene from isomeric anthracene continues to be a big challenge in the industry due to their very similar physical properties. Herein, we report the self-assembly of a water-soluble molecular bowl (TB) from a phenothiazine-based unsymmetrical terapyridyl ligand (L) and a cis-blocked 90° Pd(II) acceptor. TB featured an unusual bowl-like topology, with a wide rim diameter and a hydrophobic inner cavity fenced by the aromatic rings of the ligand. The above-mentioned features of TB allow it to bind polyaromatic hydrocarbons in its confined cavity. TB shows a higher affinity for phenanthrene over its isomer anthracene in water, which enables it to separate phenanthrene with ∼93% purity from an equimolar mixture of phenanthrene and anthracene. TB is also able to extract pyrene with around ∼90% purity from an equimolar mixture of coronene, perylene, and pyrene. Moreover, TB can be reused for several cycles without significant degradation in its performance as an extracting agent. This clean strategy of separation of phenanthrene and pyrene from a mixture of hydrophobic hydrocarbons by aqueous extraction is noteworthy.

19.
Angew Chem Int Ed Engl ; 62(28): e202305338, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37162028

ABSTRACT

Construction of metal-organic cages with unique architecture and guest binding abilities is highly desirable. Herein, we report the synthesis of a distorted trigonal cage (1) from a twisted tetratopic ligand (L) and a PdII acceptor. Surprisingly, 1 exhibited a complete structural reorganization of its building units in the presence of C70 and C60 to form guest-encapsulated tetragonal cages, (C70 )2 @2 and (C60 )2 @2, respectively. These guest-bound cages were found to be potential 1 O2 generators, with the former effectively catalyzing two different varieties of 1 O2 -mediated oxidation reactions.

20.
Angew Chem Int Ed Engl ; 62(14): e202218226, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36715420

ABSTRACT

A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.


Subject(s)
Organometallic Compounds , Photochemotherapy , Humans , HeLa Cells , Solvents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Organometallic Compounds/chemistry , Isoindoles , Zinc Compounds , Water , Zinc , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL