Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Ann Neurol ; 94(1): 146-159, 2023 07.
Article in English | MEDLINE | ID: mdl-36966460

ABSTRACT

OBJECTIVE: To characterize neurologic manifestations in post-hospitalization Neuro-PASC (PNP) and non-hospitalized Neuro-PASC (NNP) patients. METHODS: Prospective study of the first 100 consecutive PNP and 500 NNP patients evaluated at a Neuro-COVID-19 clinic between 5/2020 and 8/2021. RESULTS: PNP were older than NNP patients (mean 53.9 vs 44.9 y; p < 0.0001) with a higher prevalence of pre-existing comorbidities. An average 6.8 months from onset, the main neurologic symptoms were "brain fog" (81.2%), headache (70.3%), and dizziness (49.5%) with only anosmia, dysgeusia and myalgias being more frequent in the NNP compared to the PNP group (59 vs 39%, 57.6 vs 39% and 50.4 vs 33%, all p < 0.003). Moreover, 85.8% of patients experienced fatigue. PNP more frequently had an abnormal neurologic exam than NNP patients (62.2 vs 37%, p < 0.0001). Both groups had impaired quality of life in cognitive, fatigue, sleep, anxiety, and depression domains. PNP patients performed worse on processing speed, attention, and working memory tasks than NNP patients (T-score 41.5 vs 55, 42.5 vs 47 and 45.5 vs 49, all p < 0.001) and a US normative population. NNP patients had lower results in attention task only. Subjective impression of cognitive ability correlated with cognitive test results in NNP but not in PNP patients. INTERPRETATION: PNP and NNP patients both experience persistent neurologic symptoms affecting their quality of life. However, they harbor significant differences in demographics, comorbidities, neurologic symptoms and findings, as well as pattern of cognitive dysfunction. Such differences suggest distinct etiologies of Neuro-PASC in these populations warranting targeted interventions. ANN NEUROL 2023;94:146-159.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , Prospective Studies , Quality of Life , Fatigue/etiology
2.
Phys Chem Chem Phys ; 26(24): 17011-17027, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38835320

ABSTRACT

Pseudomonas aeruginosa, a formidable pathogen renowned for its antimicrobial resistance, poses a significant threat to immunocompromised individuals. In this regard, the MexAB-OprM efflux pump acts as a pivotal line of defense by extruding antimicrobials from bacterial cells. The inner membrane homotrimeric protein MexB captures antibiotics and translocates them into the outer membrane OprM channel protein connected through the MexA adaptor protein. Despite extensive efforts, competitive inhibitors targeting the tight (T) protomer of the MexB protein have not received FDA approval for medical use. Over the past few years, allosteric inhibitors have become popular as alternatives to the classical competitive inhibitor-based approach because of their higher specificity, lower dosage, and reduced toxicological effects. Hence, in this study, we unveiled the existence of a transmembrane allosteric binding pocket of MexB inspired by the recent discovery of an important allosteric inhibitor, BDM88855, for the homolog AcrB protein. While repurposing BDM88855 proved ineffective in controlling the MexB loose (L) protomer, our investigation identified a promising alternative: a chlorine-containing variant of DB08385 (2-Cl DB08385 or Variant 1). Molecular dynamics simulations, including binding free energy estimation coupled with heterogeneous dielectric implicit membrane model (implicit-membrane MM/PBSA), interaction entropy (IE) analysis and potential of mean force (PMF) calculation, demonstrated Variant 1's superior binding affinity to the transmembrane pocket, displaying the highest energy barrier in the ligand unbinding process. To elucidate the allosteric crosstalk between the transmembrane and porter domain of MexB, we employed the 'eigenvector centrality' measure in the linear mutual information obtained from the protein correlation network. Notably, this study confirmed the presence of an allosteric transmembrane site in the MexB L protomer. In addition to this, Variant 1 emerged as a potent regulator of allosteric crosstalk, inducing an 'O-L intermediate state' in the MexB L protomer. This induced state might hold the potential to diminish substrate intake into the access pocket, leading to the ineffective efflux of antibiotics.


Subject(s)
Anti-Bacterial Agents , Bacterial Outer Membrane Proteins , Molecular Dynamics Simulation , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Allosteric Regulation/drug effects , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Drug Resistance, Bacterial/drug effects
3.
Childs Nerv Syst ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801444

ABSTRACT

OBJECTIVE: Intraventricular hemorrhage (IVH) of prematurity occurs in 20-38% of infants born < 28 weeks gestational age and 15% of infants born in 28-32 weeks gestational age. Treatment has evolved from conservative management and CSF diversion of temporizing and shunting procedures to include strategies aimed at primarily clearing intraventricular blood products. Neuroendoscopic lavage (NEL) aims to decrease the intraventricular blood burden under the same anesthetic as temporizing CSF diversion measures in cases of hydrocephalus from IVH of prematurity. Given the variety of neuroendoscopes, we sought to review the literature and practical considerations to help guide neuroendoscope selection when planning NEL. METHODS: We conducted a systematic review of the literature on neuroendoscopic lavage in IVH of prematurity to examine data on the choice of neuroendoscope and outcomes regarding shunt rate. We then collected manufacturer data on neuroendoscopic devices, including inflow and outflow mechanisms, working channel specifications, and tools compatible with the working channel. We paired this information with the advantages and disadvantages reported in the literature and observations from the experiences of pediatric neurosurgeons from several institutions to provide a pragmatic evaluation of international clinical experience with each neuroendoscope in NEL. RESULTS: Eight studies were identified; four neuroendoscopes have been used for NEL as reported in the literature. These include the Karl Storz Flexible Neuroendoscope, LOTTA® system, GAAB system, and Aesculap MINOP® system. The LOTTA® and MINOP® systems were similar in setup and instrument options. Positive neuroendoscope features for NEL include increased degrees of visualization, better visualization with the evolution of light and camera sources, the ability to sterilize with autoclave processes, balanced inflow and outflow mechanisms via separate channels, and a working channel. Neuroendoscope disadvantages for NEL may include special sterilization requirements, large outer diameter, and limitations in working channels. CONCLUSIONS: A neuroendoscope integrating continuous irrigation, characterized by measured inflow and outflow via separate channels and multiple associated instruments, appears to be the most commonly used technology in the literature. As neuroendoscopes evolve, maximizing clear visualization, adequate inflow, measured outflow, and large enough working channels for paired instrumentation while minimizing the footprint of the outer diameter will be most advantageous when applied for NEL in premature infants.

4.
Angew Chem Int Ed Engl ; 62(10): e202215938, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36507657

ABSTRACT

Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises. Here, we provide a unique aspect to discuss the intriguing nitrogen electrochemistry by linking three essential nitrogen-containing compounds (i.e., N2 , NH3 , and NO3 - ) and integrating four essential electrochemical reactions, i.e., the nitrogen reduction reaction (N2 RR), nitrogen oxidation reaction (N2 OR), nitrate reduction reaction (NO3 RR), and ammonia oxidation reaction (NH3 OR). This minireview also summarizes the acquired knowledge of rational catalyst design and underlying reaction mechanisms for these interlinked nitrogen reactions. We further underscore the associated clean energy technologies and a sustainable nitrogen-based economy.

5.
Angew Chem Int Ed Engl ; 62(34): e202304797, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37376764

ABSTRACT

Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing pathway to convert N2 into NH3 . However, significant kinetic barriers of the NRR at low temperatures in desirable aqueous electrolytes remain a grand challenge due to the inert N≡N bond of the N2 molecule. Herein, we propose a unique strategy for in situ oxygen vacancy construction to address the significant trade-off between N2 adsorption and NH3 desorption by building a hollow shell structured Fe3 C/Fe3 O4 heterojunction coated with carbon frameworks (Fe3 C/Fe3 O4 @C). In the heterostructure, the Fe3 C triggers the oxygen vacancies of the Fe3 O4 component, which are likely active sites for the NRR. The design could optimize the adsorption strength of the N2 and Nx Hy intermediates, thus boosting the catalytic activity for the NRR. This work highlights the significance of the interaction between defect and interface engineering for regulating electrocatalytic properties of heterostructured catalysts for the challenging NRR. It could motivate an in-depth exploration to advance N2 reduction to ammonia.

6.
Inorg Chem ; 56(17): 10760-10774, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28817264

ABSTRACT

One-pot reactions between the [Mn3O(O2CPh)6(py)x]+/0 triangular precursors and either CaBr2·xH2O or CaCl2·6H2O, in the presence of salicylhydroxamic acid (shaH2), have afforded the heterometallic complexes [MnIII4Ca2(O2CPh)4(shi)4(H2O)3(Me2CO)] (1) and (pyH)[MnII2MnIII4Ca2Cl2(O2CPh)7(shi)4(py)4] (2), respectively, in good yields. Further reactions but using a more flexible synthetic scheme comprising the Mn(NO3)2·4H2O/Ca(NO3)2·4H2O and Mn(O2CPh)2·2H2O/Ca(ClO4)2·4H2O "metal blends" and shaH2, in the presence of external base NEt3, led to the new complexes (NHEt3)2[MnIII4MnIV4Ca(OEt)2(shi)10(EtOH)2] (3) and (NHEt3)4[MnIII8Ca2(CO3)4(shi)8] (4), respectively. In all reported compounds, the anion of the tetradentate (N,O,O,O)-chelating/bridging ligand salicylhydroxime (shi3-), resulting from the in situ metal-ion-assisted amide-iminol tautomerism of shaH2, was found to bridge both Mn and Ca atoms. Complexes 1-4 exhibit a variety of different structures, metal stoichiometries, and Mn oxidation-state descriptions; 1 possesses an overall octahedral metal arrangement, 2 can be described as a Mn4Ca2 octahedron bound to an additional Mn2 unit, 3 consists of a Mn8 "ring" surrounding a CaII atom, and 4 adopts a rectangular cuboidal motif of eight Mn atoms accommodating two CaII atoms. Solid-state direct-current magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the Mn centers, leading to S = 0 spin ground-state values for all complexes. From a bioinorganic chemistry perspective, the reported compounds may demonstrate some relevance to both high-valent scheme (3) and lower-oxidation-level species (1, 2, and 4) of the catalytic cycle of the oxygen-evolving complex.

7.
Proc Natl Acad Sci U S A ; 109(7): 2257-62, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22308383

ABSTRACT

The laboratory synthesis of the oxygen-evolving complex (OEC) of photosystem II has been the objective of synthetic chemists since the early 1970s. However, the absence of structural information on the OEC has hampered these efforts. Crystallographic reports on photosystem II that have been appearing at ever-improving resolution over the past ten years have finally provided invaluable structural information on the OEC and show that it comprises a [Mn(3)CaO(4)] distorted cubane, to which is attached a fourth, external Mn atom, and the whole unit attached to polypeptides primarily by aspartate and glutamate carboxylate groups. Such a heterometallic Mn/Ca cubane with an additional metal attached to it has been unknown in the literature. This paper reports the laboratory synthesis of such an asymmetric cubane-containing compound with a bound external metal atom, [(1)]. All peripheral ligands are carboxylate or carboxylic acid groups. Variable-temperature magnetic susceptibility data have established 1 to possess an S = 9/2 ground state. EPR spectroscopy confirms this, and the Davies electron nuclear double resonance data reveal similar hyperfine couplings to those of other Mn(IV) species, including the OEC S(2) state. Comparison of the X-ray absorption data with those for the OEC reveal 1 to possess structural parameters that make it a close structural model of the asymmetric-cubane OEC unit. This geometric and electronic structural correspondence opens up a new front in the multidisciplinary study of the properties and function of this important biological unit.


Subject(s)
Calcium Compounds/chemistry , Manganese/chemistry , Models, Molecular , Oxides/chemistry , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Magnetics
8.
Neuroimage ; 89: 92-109, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24345390

ABSTRACT

Nuclear magnetic resonance (NMR) relaxation in the rotating frame is sensitive to molecular dynamics on the time scale of water molecules interacting with macromolecules or supramolecular complexes, such as proteins, myelin and cell membranes. Hence, longitudinal (T1ρ) and transverse (T2ρ) relaxation in the rotating frame may have a great potential to probe the macromolecular fraction of tissues. This stimulated a large interest in using this MR contrast to image brain under healthy and disease conditions. However, experimental challenges related to the use of intense radiofrequency irradiation have limited the widespread use of T1ρ and T2ρ imaging. Here, we present methodological development to acquire 3D high-resolution or 2D (multi-)slice selective T1ρ and T2ρ maps of the entire human brain within short acquisition times. These improvements are based on a class of gradient modulated adiabatic pulses that reduce the power deposition, provide slice selection, and mitigate artifacts resulting from inhomogeneities of B1 and B0 magnetic fields. Based on an analytical model of the T1ρ and T2ρ relaxation we compute the maps of macromolecular bound water fraction, correlation and exchange time constants as quantitative biomarkers informative of tissue macromolecular content. Results obtained from simulations, phantoms and five healthy subjects are included.


Subject(s)
Brain Chemistry , Brain Mapping/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Water/chemistry , Adult , Humans , Male , Molecular Dynamics Simulation
9.
Inorg Chem ; 53(19): 10748-61, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25226090

ABSTRACT

A library of 10 Mn-containing complexes capable of switching reversibly between the Mn(II) and Mn(III) oxidation states was prepared and evaluated for potential usage as MRI reporters of tissue redox activity. We synthesized N-(2-hydroxybenzyl)-N,N',N'-ethylenediaminetriacetic acid (HBET) and N-(2-hydroxybenzyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetic acid (CyHBET) ligands functionalized (-H, -OMe, -NO2) at the 5-position of the aromatic ring. The Mn(II) complexes of all ligands and the Mn(III) complexes of the 5-H and 5-NO2 functionalized ligands were synthesized and isolated, but the Mn(III) complexes with the 5-OMe functionalized ligands were unstable. (1)H relaxivity of the 10 isolable complexes was measured at pH 7.4 and 37 °C, 1.4 T. Thermodynamic stability, pH-dependent complex speciation, hydration state, water exchange kinetics of the Mn(II) complexes, and pseudo-first order reduction kinetics of the Mn(III) complexes were studied using a combination of pH-potentiometry, UV-vis spectroscopy, and (1)H and (17)O NMR measurements. The effects of ligand structural and electronic modifications on the Mn(II/III) redox couple were studied by cyclic voltammetry. The Mn(II) complexes are potent relaxation agents as compared to the corresponding Mn(III) species with [Mn(II)(CyHBET)(H2O)](2-) exhibiting a 7.5-fold higher relaxivity (3.3 mM(-1) s(-1)) than the oxidized form (0.4 mM(-1) s(-1)). At pH 7.4, Mn(II) exists as a mixture of fully deprotonated (ML) and monoprotonated (HML) complexes and Mn(II) complex stability decreases as the ligands become more electron-releasing (pMn for 10 µM [Mn(II)(CyHBET-R')(H2O)](2-) decreases from 7.6 to 6.2 as R' goes from -NO2 to -OMe, respectively). HML speciation increases as the electron-releasing nature of the phenolato-O donor increases. The presence of a water coligand is maintained upon conversion from HML to ML, but the water exchange rate of ML is faster by up to 2 orders of magnitude (k(ex)(310) for H[Mn(II)(CyHBET)(H2O)](-) and [Mn(II)(CyHBET)(H2O)](2-) are 1.2 × 10(8) and 1.0 × 10(10) s(-1), respectively). The Mn(II/III) redox potential can be tuned over a range of 0.30 V (E(1/2) = 0.27-0.57 V) through electronic modifications to the 5-substituent of the aromatic ligand component. However, care must be taken in tuning the ligand electronics to avoid Mn(III)-ligand autoredox. Taken together, these results serve to establish criteria for optimizing Mn(III) versus Mn(II) relaxivity differentials, complex stability, and Mn(II/III) redox potential.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging , Manganese/chemistry , Organometallic Compounds/chemistry , Contrast Media/chemical synthesis , Molecular Structure , Organometallic Compounds/chemical synthesis , Oxidation-Reduction
10.
J Am Chem Soc ; 135(12): 4620-3, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23510406

ABSTRACT

Here we report a simple Mn coordination complex with utility as a redox-sensitive MR probe. The HBET ligand stabilizes both the Mn(2+) and Mn(3+) oxidation states. In the presence of glutathione (GSH), low relaxivity Mn(III)-HBET is converted to high relaxivity Mn(II)-HBET with a 3-fold increase in relaxivity, and concomitant increase in MR signal. Alternately, hydrogen peroxide can convert Mn(II)-HBET to Mn(III)-HBET with a reduction in MR signal.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Glutathione/chemistry , Hydrogen Peroxide/chemistry , Magnetic Resonance Imaging , Oxidation-Reduction
11.
Inorg Chem ; 52(2): 873-84, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23272642

ABSTRACT

The comproportionation reaction between Mn(II) and Mn(VII) reagents under acidic conditions has been investigated in the presence of pivalic acid as a route to new high oxidation state manganese pivalate clusters containing some Mn(IV). The reaction of Mn(O(2)CBu(t))(2) and NBu(n)(4)MnO(4) with an excess of pivalic acid in the presence of Mn(ClO(4))(2) and NBu(n)(4)Cl in hot MeCN led to the isolation of [Mn(8)O(6)(OH)(O(2)CBu(t))(9)Cl(3)(Bu(t)CO(2)H)(0.5)(MeCN)(0.5)] (1). In contrast, the reaction of Mn(NO(3))(2) and NBu(n)(4)MnO(4) in hot MeCN with an excess of pivalic acid gave a different octanuclear complex, [Mn(8)O(9)(O(2)CBu(t))(12)] (2). The latter reaction but with Mn(O(2)CBu(t))(2) in place of Mn(NO(3))(2), and in a MeCN/THF solvent medium, gave [Mn(9)O(7)(O(2)CBu(t))(13)(THF)(2)] (3). Complexes 1-3 possess rare or unprecedented Mn(x) topologies: 1 possesses a [Mn(III)(7)Mn(IV)(µ(3)-O)(4)(µ(4)-O)(2)(µ(3)-OH)(µ(4)-Cl)(µ(2)-Cl)](8+) core consisting of two body-fused Mn(4) butterfly units attached to the remaining Mn atoms via bridging O(2-), OH(-), and Cl(-) ions. In contrast, 2 possesses a [Mn(6)(IV)Mn(2)(III)(µ(3)-O)(6)(µ-O)(3)](12+) core consisting of two [Mn(3)O(4)] incomplete cubanes linked by their O(2-) ions to two Mn(III) atoms. The cores of 1 and 2 are unprecedented in Mn chemistry. The [Mn(III)(9)(µ(3)-O)(7)](13+) core of 3 also contains two body-fused Mn(4) butterfly units, but they are linked to the remaining Mn atoms in a different manner than in 1. Solid-state direct current (dc) and/or alternating current (ac) magnetic susceptibility data established S = (15)/(2), S = 2, and S = 1 ground states for 1·MeCN, 2·(1)/(4)MeCN, and 3, respectively. The ac susceptibility data also revealed nonzero, frequency-dependent out-of-phase (χ″(M)) signals for 1·MeCN at temperatures below 3 K, suggesting possible single-molecule magnet behavior, which was confirmed by single-crystal magnetization vs dc field scans that exhibited hysteresis loops. The combined work thus demonstrates the continuing potential of comproportionation reactions for isolating high oxidation state Mn(x) clusters, and the sensitivity of the product identity to minor changes in the reaction conditions.


Subject(s)
Magnetics , Manganese/chemistry , Manganese/classification , Crystallography, X-Ray , Models, Molecular , Oxidation-Reduction
12.
Inorg Chem ; 52(10): 5642-4, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23647530

ABSTRACT

The oxygen-evolving complex (OEC) in photosystem II (PS II) was studied in the S0 through S3 states using 1s2p resonant inelastic X-ray scattering spectroscopy. The spectral changes of the OEC during the S-state transitions are subtle, indicating that the electrons are strongly delocalized throughout the cluster. The result suggests that, in addition to the Mn ions, ligands are also playing an important role in the redox reactions. A series of Mn(IV) coordination complexes were compared, particularly with the PS II S3 state spectrum to understand its oxidation state. We find strong variations of the electronic structure within the series of Mn(IV) model systems. The spectrum of the S3 state best resembles those of the Mn(IV) complexes Mn3(IV)Ca2 and saplnMn2(IV)(OH)2. The current result emphasizes that the assignment of formal oxidation states alone is not sufficient for understanding the detailed electronic structural changes that govern the catalytic reaction in the OEC.


Subject(s)
Manganese/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Biocatalysis , Electrons , Molecular Structure , Organometallic Compounds/metabolism , Photosystem II Protein Complex/metabolism
13.
Comput Biol Med ; 161: 107055, 2023 07.
Article in English | MEDLINE | ID: mdl-37244149

ABSTRACT

In the current work, multicomplex-based pharmacophore modeling was performed on the CDK9 enzyme. The generated models possess five, four, and six features, which were subjected to the validation process. Among them, six feature models were selected as representative models to conduct the virtual screening process. The screened drug-like candidates were chosen to perform molecular docking to study their interaction patterns within the binding cavity of the CDK9 protein. Based on the docking score and presence of crucial interactions, out of 780 filtered candidates, only 205 were docked. These docked candidates were further accessed via HYDE assessment. Based on ligand efficiency and Hyde score, only nine candidates passed the criteria. The stability of these nine complexes, along with the reference, was studied by molecular dynamics simulations. Out of nine, only seven displayed stable behaviour during the simulations, and their stability was further assessed by molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA)-based free binding energy calculations and per residue contribution. From the present contribution, we obtained seven unique scaffolds that can be utilized as the starting lead for the development of CDK9 anticancer compounds.


Subject(s)
Biological Products , Molecular Dynamics Simulation , Molecular Docking Simulation , Pharmacophore , Ligands , Enzyme Inhibitors/pharmacology
14.
Inorg Chem ; 50(9): 3849-51, 2011 May 02.
Article in English | MEDLINE | ID: mdl-21446647

ABSTRACT

Two clusters with a new type of Fe(III)(7) disklike structure have been prepared; in contrast to other Fe(III)(7) disks, they possess high ground-state spins (S = (15)/(2) and (21)/(2)), which have been rationalized by analysis of the spin-frustration patterns.

15.
Inorg Chem ; 50(22): 11276-8, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22010877

ABSTRACT

The initial employment of 2-(hydroxymethyl)pyridine in 4f metal chemistry has afforded a new family of Ln(III)(9) clusters with a sandglass-like topology and dual physical properties; the Dy(III) member shows single-molecule magnetism behavior, while the Eu(III) analogue exhibits intense red photoluminescence.

16.
J Neuroimmune Pharmacol ; 16(1): 38-47, 2021 03.
Article in English | MEDLINE | ID: mdl-33405098

ABSTRACT

While clinical characteristics exhibit that susceptibility to COVID-19 infection is equally likely between males and females, clinical outcomes show that males experience both a higher severity and fatality for COVID-19 infection than females. This review examines the evidence for these sex and gender differences and aims to illustrate possible mechanisms behind such sensitivity. Successful entry of SARS-CoV-2 into the body is dependent on the angiotensin-converting enzyme 2 (ACE2) receptor and the transmembrane protease serine 2 (TMPRSS2). Thus, sex-based differences in the expression of the ACE2 receptor and TMPRSS2 may explain the disparities in COVID-19 severity and fatality. Furthermore, these disparities may also be attributed to sex-based difference in immunological responses. Finally, the differences in clinical outcomes of COVID-19 infections between men and women may be due to gendered differences in behaviors, such as smoking, and prevalence to comorbidities. An understanding of the sex and gender sensitivities of COVID-19 infection is a necessary component towards the creation of effective treatment options and therapies for the virus. Graphical abstract.


Subject(s)
COVID-19/epidemiology , Disease Susceptibility/epidemiology , COVID-19/genetics , COVID-19/therapy , Female , Gender Identity , Genetic Predisposition to Disease , Humans , Male , Sex Characteristics
17.
J Alzheimers Dis Rep ; 5(1): 295-310, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-34113786

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is one of the most important neurodegenerative disorders in human in which recovery of functions could be achieved by improving the survival and function of residual dopaminergic neurons in the substantia nigra pars compacta. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the dopamine (DA) biosynthesis pathway. OBJECTIVE: Earlier our laboratory has shown that sodium benzoate (NaB), a metabolite of cinnamon and an FDA-approved drug against urea cycle disorders and glycine encephalopathy, increases neuroprotective molecules and protects dopaminergic neurons in a mouse model of PD. Here, we examined whether NaB could stimulate the production of DA in dopaminergic neurons. METHODS: We employed PCR, real-time PCR, western blot, immunostaining, and HPLC to study the signature function of dopaminergic neurons. Locomotor functions were monitored in mice by open-field. RESULTS: NaB increased the mRNA and protein expression of TH to produce DA in mouse MN9D dopaminergic neuronal cells. Accordingly, oral feeding of NaB increased the expression of TH in the nigra, upregulated striatal DA, and improved locomotor activities in striatum of normal C57/BL6 and aged A53T-α-syn transgenic mice. Rapid induction of cAMP response element binding (CREB) activation by NaB in dopaminergic neuronal cells and the abrogation of NaB-induced expression of TH by siRNA knockdown of CREB suggest that NaB stimulates the transcription of TH in dopaminergic neurons via CREB. CONCLUSION: These results indicate a new function of NaB in which it may be beneficial in PD via stimulation of DA production from residual dopaminergic neurons.

18.
Chem Commun (Camb) ; (1): 62-4, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19081999

ABSTRACT

A Ga(20) single-strand wheel has been prepared by a targeted, propane-1,3-diolate-induced size modification of the known Ga(10)'gallic wheel'; the Ga(20) reverts back to Ga(10) on treatment with an excess of MeOH.

19.
Inorg Chem ; 47(19): 9021-34, 2008 Oct 06.
Article in English | MEDLINE | ID: mdl-18698763

ABSTRACT

Convenient, high-yield routes have been developed to [Fe 10(OMe) 20(O 2CR) 10] ( 1) "ferric wheels" involving the alcoholysis of [Fe 3O(O 2CR) 6(H 2O) 3] (+) salts in MeOH in the presence of NEt 3. Reactivity studies have established [Fe 10(OMe) 20(O 2CMe) 10] ( 1a) to undergo clean carboxylate substitution with a variety of other RCO 2H groups to the corresponding [Fe 10(OMe) 20(O 2CR) 10] product. In contrast, the reaction with phenol causes a nuclearity change to give a smaller [Fe 8(OH) 4(OPh) 8(O 2CR) 12] ( 2) wheel. Similarly, reactions of [Fe 10(OMe) 20(O 2CR) 10] with the bidentate chelate ethylenediamine (en) cause a structural change to give either [Fe 8O 5(O 2CMe) 8(en) 8](ClO 4) 6 ( 3) or [Fe 2O(O 2CBu (t))(en) 4](NO 3) 3 ( 4), depending on conditions. Complex 3 possesses a "Christmas-star" Fe 8 topology comprising a central planar [Fe 4(mu 4-O)] (10+) square subunit edge-fused to four oxide-centered [Fe 3(mu 3-O)] (7+) triangular units. Variable-temperature, solid-state dc and ac magnetization studies on complexes 1a- 4 in the 5.0-300 K range established that all the complexes possess an S = 0 ground state. The magnetic susceptibility data for 4 were fit to the theoretical chi M versus T expression derived by the use of an isotropic Heisenberg spin Hamiltonian and the Van Vleck equation, and this revealed an antiferromagnetic exchange parameter with a value of J = -107.7(5) cm (-1). This value is consistent with that predicted by a previously published magnetostructural relationship. Theoretically computed values of the exchange constants in 3 were obtained with the ZILSH method, and the pattern of spin frustration within its core and the origin of its S = 0 ground state have been analyzed in detail.

20.
Nanoscale ; 10(36): 17318-17326, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30198032

ABSTRACT

Pt alloy nanoparticles supported on Vulcan XC-72 (Pt/C) are the most effective catalysts for kinetically sluggish oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. However, significant performance degradation has been observed with the Pt/C catalysts due to agglomeration and Ostwald ripening of Pt nanoparticles largely resulting from the corrosion of carbon supports. Here, we developed a Pt alloy catalyst through annealing Pt nanoparticles deposited on nitrogen/metal co-doped large-size graphene tubes (NGTs). The in-situ formation of PtM (M: Co and Ni) alloy during the annealing process contributes to the improvement of the catalytic activity and stability. During the accelerated stress tests (AST), after 20 000 potential cycles (0.6-1.0 V vs. RHE), the retained electrochemical surface area (ECSA) of the PtM/NGT catalyst is more than 2 times larger than that of the Pt/C catalyst. As for the AST tests of carbon corrosion, after 30 000 potential cycles (1.0-1.5 V vs. RHE) at room temperature, the NGT morphologies are well maintained and no ECSA loss of this PtM catalyst is observed, indicating excellent corrosion-resistance. Even at harsher 60 °C, the PtM/NGT catalyst exhibits only insignificant loss (6 mV) of E1/2 while the Pt/C catalyst shows significant degradation (47 mV loss in E1/2). The improved stability of PtM/NGT catalyst is attributed to the highly graphitized NGTs and possible synergistic effects between the NGT carbon support and the PtM alloy nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL