Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters

Publication year range
1.
Cell ; 159(5): 1070-1085, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416946

ABSTRACT

Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system.


Subject(s)
Hematopoietic Stem Cells/metabolism , Signal Transduction , Animals , Embryo, Nonmammalian/metabolism , Hematopoiesis , Hematopoietic Stem Cells/cytology , NF-kappa B/metabolism , Neutrophils/metabolism , Receptors, Notch/metabolism , Tumor Necrosis Factor-alpha/metabolism , Zebrafish/metabolism
2.
Immunity ; 51(1): 50-63.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31174991

ABSTRACT

Chronic inflammatory diseases are associated with altered hematopoiesis that could result in neutrophilia and anemia. Here we report that genetic or chemical manipulation of different inflammasome components altered the differentiation of hematopoietic stem and progenitor cells (HSPC) in zebrafish. Although the inflammasome was dispensable for the emergence of HSPC, it was intrinsically required for their myeloid differentiation. In addition, Gata1 transcript and protein amounts increased in inflammasome-deficient larvae, enforcing erythropoiesis and inhibiting myelopoiesis. This mechanism is evolutionarily conserved, since pharmacological inhibition of the inflammasome altered erythroid differentiation of human erythroleukemic K562 cells. In addition, caspase-1 inhibition rapidly upregulated GATA1 protein in mouse HSPC promoting their erythroid differentiation. Importantly, pharmacological inhibition of the inflammasome rescued zebrafish disease models of neutrophilic inflammation and anemia. These results indicate that the inflammasome plays a major role in the pathogenesis of neutrophilia and anemia of chronic diseases and reveal druggable targets for therapeutic interventions.


Subject(s)
Anemia/immunology , Fish Diseases/immunology , GATA1 Transcription Factor/metabolism , Inflammasomes/metabolism , Inflammation/immunology , Neutrophils/immunology , Zebrafish Proteins/metabolism , Zebrafish/physiology , Animals , Animals, Genetically Modified , Caspase 1/genetics , Caspase 1/metabolism , Cell Differentiation , Erythroid Cells/cytology , GATA1 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Hematopoiesis , Humans , Inflammasomes/genetics , K562 Cells , Male , Mice , Mice, Inbred C57BL , Proteolysis , Zebrafish Proteins/genetics
3.
PLoS Biol ; 19(11): e3001455, 2021 11.
Article in English | MEDLINE | ID: mdl-34748530

ABSTRACT

Several studies have revealed a correlation between chronic inflammation and nicotinamide adenine dinucleotide (NAD+) metabolism, but the precise mechanism involved is unknown. Here, we report that the genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, reduced oxidative stress, inflammation, and keratinocyte DNA damage, hyperproliferation, and cell death in zebrafish models of chronic skin inflammation, while all these effects were reversed by NAD+ supplementation. Similarly, genetic and pharmacological inhibition of poly(ADP-ribose) (PAR) polymerase 1 (Parp1), overexpression of PAR glycohydrolase, inhibition of apoptosis-inducing factor 1, inhibition of NADPH oxidases, and reactive oxygen species (ROS) scavenging all phenocopied the effects of Nampt inhibition. Pharmacological inhibition of NADPH oxidases/NAMPT/PARP/AIFM1 axis decreased the expression of pathology-associated genes in human organotypic 3D skin models of psoriasis. Consistently, an aberrant induction of NAMPT and PARP activity, together with AIFM1 nuclear translocation, was observed in lesional skin from psoriasis patients. In conclusion, hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation through parthanatos cell death.


Subject(s)
Inflammation/pathology , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Parthanatos , Poly(ADP-ribose) Polymerases/metabolism , Skin/pathology , Animals , Apoptosis Inducing Factor/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , DNA Damage , Disease Models, Animal , Gene Expression Regulation/drug effects , Inflammation/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Larva/metabolism , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Oxidative Stress/drug effects , Oxidative Stress/genetics , Parthanatos/drug effects , Parthanatos/genetics , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proteinase Inhibitory Proteins, Secretory/deficiency , Proteinase Inhibitory Proteins, Secretory/metabolism , Psoriasis/genetics , Psoriasis/pathology , Reactive Oxygen Species/metabolism , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34353901

ABSTRACT

Dyskeratosis congenita (DC) is a rare inherited bone marrow failure and cancer predisposition syndrome caused by mutations in telomerase or telomeric proteins. Here, we report that zebrafish telomerase RNA (terc) binds to specific DNA sequences of master myeloid genes and controls their expression by recruiting RNA Polymerase II (Pol II). Zebrafish terc harboring the CR4-CR5 domain mutation found in DC patients hardly interacted with Pol II and failed to regulate myeloid gene expression in vivo and to increase their transcription rates in vitro. Similarly, TERC regulated myeloid gene expression and Pol II promoter occupancy in human myeloid progenitor cells. Strikingly, induced pluripotent stem cells derived from DC patients with a TERC mutation in the CR4-CR5 domain showed impaired myelopoiesis, while those with mutated telomerase catalytic subunit differentiated normally. Our findings show that TERC acts as a transcription factor, revealing a target for therapeutic intervention in DC patients.


Subject(s)
Dyskeratosis Congenita/genetics , Myelopoiesis/physiology , RNA Polymerase II/genetics , RNA/metabolism , Telomerase/metabolism , Animals , Animals, Genetically Modified , Binding Sites , Cells, Cultured , Dyskeratosis Congenita/pathology , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/pathology , Larva/genetics , Mutation , Myelopoiesis/genetics , Promoter Regions, Genetic , Protein Domains , RNA/genetics , RNA Polymerase II/metabolism , Telomerase/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
5.
Trends Immunol ; 41(12): 1116-1127, 2020 12.
Article in English | MEDLINE | ID: mdl-33162327

ABSTRACT

Hematopoiesis is a complex process through which immature bone marrow precursor cells mature into all types of blood cells. Although the association of hematopoietic lineage bias (including anemia and neutrophilia) with chronic inflammatory diseases has long been appreciated, the causes involved are obscure. Recently, cytosolic multiprotein inflammasome complexes were shown to activate inflammatory and immune responses, and directly regulate hematopoiesis in zebrafish models; this was deemed to occur via cleavage and inactivation of the master erythroid transcription factor GATA1. Herein summarized are the zebrafish models that are currently available to study this unappreciated role of inflammasome-mediated regulation of hematopoiesis. Novel putative therapeutic strategies, for the treatment of hematopoietic alterations associated with chronic inflammatory diseases in humans, are also proposed.


Subject(s)
Hematopoiesis , Inflammasomes , Models, Animal , Zebrafish , Animals , Hematopoiesis/genetics , Hematopoiesis/immunology , Humans , Inflammasomes/metabolism , Research/trends , Zebrafish/genetics , Zebrafish/immunology , Zebrafish Proteins/genetics , Zebrafish Proteins/immunology
6.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835535

ABSTRACT

Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.


Subject(s)
Microbiota , Virus Diseases , Male , Female , Humans , RNA, Ribosomal, 16S/genetics , Genes, rRNA , Nasopharynx/microbiology , Microbiota/genetics , Bacteria/genetics , Aging , Virus Diseases/genetics
7.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175698

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.


Subject(s)
Dermatitis, Atopic , Psoriasis , Animals , Humans , Inflammation , NAD/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Psoriasis/etiology , Zebrafish/metabolism
8.
Proc Natl Acad Sci U S A ; 116(25): 12428-12436, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31160464

ABSTRACT

The nervous system regulates host immunity in complex ways. Vertebrate olfactory sensory neurons (OSNs) are located in direct contact with pathogens; however, OSNs' ability to detect danger and initiate immune responses is unclear. We report that nasal delivery of rhabdoviruses induces apoptosis in crypt OSNs via the interaction of the OSN TrkA receptor with the viral glycoprotein in teleost fish. This signal results in electrical activation of neurons and very rapid proinflammatory responses in the olfactory organ (OO), but dampened inflammation in the olfactory bulb (OB). CD8α+ cells infiltrate the OO within minutes of nasal viral delivery, and TrkA blocking, but not caspase-3 blocking, abrogates this response. Infiltrating CD8α+ cells were TCRαß T cells with a nonconventional phenotype that originated from the microvasculature surrounding the OB and not the periphery. Nasal delivery of viral glycoprotein (G protein) recapitulated the immune responses observed with the whole virus, and antibody blocking of viral G protein abrogated these responses. Ablation of crypt neurons in zebrafish resulted in increased susceptibility to rhabdoviruses. These results indicate a function for OSNs as a first layer of pathogen detection in vertebrates and as orchestrators of nasal-CNS antiviral immune responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Infectious hematopoietic necrosis virus/immunology , Olfactory Receptor Neurons/physiology , Receptor, trkA/metabolism , Animals , Apoptosis , Caspase 3/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/virology , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/virology , Oncorhynchus mykiss
9.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076906

ABSTRACT

A retrospective study of 200 psoriasis patients and 100 healthy donors in a Spanish cohort was carried out to study the comorbidities associated with psoriasis and their association with the response to phototherapy. The results showed a higher incidence of psychiatric disease, liver disease, kidney disease, hypertension, heart disease, vascular disease, diabetes, gastrointestinal disease, autoimmune and infectious diseases, dyslipidemia, and psoriatic arthritis in patients with psoriasis than in the control group. The incidence of comorbidities was higher in psoriasis patients over 40 years old than in the control individuals of the same age, which could be indicative of premature aging. Phototherapy was seen to be an effective treatment in cases of moderate-severe psoriasis, total whitening being achieved in more than 30% of patients, with women showing a better response than men. Narrow-band ultraviolet B was found to be the most effective type of phototherapy, although achievement of PASI100 was lower in patients with liver disease, hypertension, heart disease, vascular disease, or diabetes. Strikingly, liver disease and anemia comorbidities favored therapeutic failure. Finally, zebrafish and human 3D organotypic models of psoriasis point to the therapeutic benefit of inhibiting the glucose transporter GLUT1 and the major regulator of blood glucose dipeptidyl peptidase 4. Our study reveals that specific comorbidities of psoriasis patients are associated to failure of phototherapy and, therefore, need to be considered when planning treatment for these patients.


Subject(s)
Hypertension , Psoriasis , Ultraviolet Therapy , Adult , Animals , Female , Humans , Male , Phototherapy/methods , Psoriasis/drug therapy , Psoriasis/therapy , Retrospective Studies , Ultraviolet Therapy/methods , Zebrafish
10.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142384

ABSTRACT

Telomere shortening is the main molecular mechanism of aging, but not the only one. The adaptive immune system also ages, and older organisms tend to develop a chronic pro-inflammatory status with low-grade inflammation characterized by chronic activation of the innate immune system, called inflammaging. One of the main stimuli that fuels inflammaging is a high nutrient intake, triggering a metabolic inflammation process called metainflammation. In this study, we report the anti-inflammatory activity of several senolytic drugs in the context of chronic inflammation, by using two different zebrafish models: (i) a chronic skin inflammation model with a hypomorphic mutation in spint1a, the gene encoding the serine protease inhibitor, kunitz-type, 1a (also known as hai1a) and (ii) a non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) model with inflammation induced by a high-fat diet. Our results show that, although these models do not manifest premature aging, the senolytic drugs dasatinib, navitoclax, and venetoclax have an anti-inflammatory effect that results in the amelioration of chronic inflammation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Zebrafish , Aniline Compounds , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic , Cellular Senescence , Dasatinib/pharmacology , Dasatinib/therapeutic use , Inflammation/drug therapy , Senotherapeutics , Serine Proteinase Inhibitors/pharmacology , Sulfonamides
11.
Immunity ; 37(3): 487-500, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22981536

ABSTRACT

Cell volume regulation is a primitive response to alterations in environmental osmolarity. The NLRP3 inflammasome is a multiprotein complex that senses pathogen- and danger-associated signals. Here, we report that, from fish to mammals, the basic mechanisms of cell swelling and regulatory volume decrease (RVD) are sensed via the NLRP3 inflammasome. We found that a decrease in extracellular osmolarity induced a K(+)-dependent conformational change of the preassembled NLRP3-inactive inflammasome during cell swelling, followed by activation of the NLRP3 inflammasome and caspase-1, which was controlled by transient receptor potential channels during RVD. Both mechanisms were necessary for interleukin-1ß processing. Increased extracellular osmolarity prevented caspase-1 activation by different known NLRP3 activators. Collectively, our data identify cell volume regulation as a basic conserved homeostatic mechanism associated with the formation of the NLRP3 inflammasome and reveal a mechanism for NLRP3 inflammasome activation.


Subject(s)
Carrier Proteins/metabolism , Cell Size , Inflammasomes/metabolism , Macrophages/metabolism , Animals , Apoptosis Regulatory Proteins , Blotting, Western , CARD Signaling Adaptor Proteins , Carrier Proteins/genetics , Caspase 1/genetics , Caspase 1/metabolism , Cell Line , Cells, Cultured , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , HEK293 Cells , Humans , Hypertonic Solutions/pharmacology , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Macrophages/cytology , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Osmolar Concentration , RNA Interference , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Time Factors
12.
Fish Shellfish Immunol ; 119: 300-307, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656757

ABSTRACT

Bee pollen, a natural resource collected by bees, is rich in many nutrients, therefore it may represent a useful dietary supplement. Different uses of bee pollen are proposed due to its beneficial health properties, which includes the capacity to improve animal performance and promote immunostimulation. Animal nutrition can directly affect adults and their offspring, and larval stage is a critical moment for fish due to high mortality related to immune challenges. Thus, the present study attempted to evaluate the effects of adding bee pollen to a zebrafish diet, specifically, analyzing the effects on reproduction and immunity transference to descendants. Zebrafish adults received control diets based on commercial flakes and live food Artemia sp. nauplii or bee pollen-supplemented diets, administered three times a day, at the same time. The animals received the diets over 60 d, and throughout this period, they were tested for: egg production per female, total number of eggs, embryo viability rate, larval survival rate after exposure to spring viremia of carp virus and to Salmonella enterica serovar Typhimurium, and larval neutrophil recruitment after tail wounding. Bee pollen supplementation failed to improve egg production and embryo viability, and was unable to substitute flakes in zebrafish breeders. Instead, the offspring of breeders fed with bee pollen supplemented diets showed longer survival upon virus exposure and higher neutrophil migration to wounds. These results indicate that bee pollen can influence vertical immunity through important mechanisms related to offspring immunity in the early stages, when larval immune system is not fully developed.


Subject(s)
Pollen , Zebrafish , Animal Nutritional Physiological Phenomena , Animals , Bees , Diet/veterinary , Dietary Supplements , Larva , Reproduction
13.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803452

ABSTRACT

Apoptosis is the main mechanism by which multicellular organisms eliminate damaged or unwanted cells. To regulate this process, a balance between pro-survival and pro-apoptotic proteins is necessary in order to avoid impaired apoptosis, which is the cause of several pathologies, including cancer. Among the anti-apoptotic proteins, Bcl-xL exhibits a high conformational flexibility, whose regulation is strictly controlled by alternative splicing and post-transcriptional regulation mediated by transcription factors or microRNAs. It shows relevant functions in different forms of cancer, including melanoma. In melanoma, Bcl-xL contributes to both canonical roles, such as pro-survival, protection from apoptosis and induction of drug resistance, and non-canonical functions, including promotion of cell migration and invasion, and angiogenesis. Growing evidence indicates that Bcl-xL inhibition can be helpful for cancer patients, but at present, effective and safe therapies targeting Bcl-xL are lacking due to toxicity to platelets. In this review, we summarized findings describing the mechanisms of Bcl-xL regulation, and the role that Bcl-xL plays in melanoma pathobiology and response to therapy. From these findings, it emerged that even if Bcl-xL plays a crucial role in melanoma pathobiology, we need further studies aimed at evaluating the involvement of Bcl-xL and other members of the Bcl-2 family in the progression of melanoma and at identifying new non-toxic Bcl-xL inhibitors.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , Melanoma/blood supply , Melanoma/metabolism , Neovascularization, Pathologic/drug therapy , bcl-X Protein/metabolism , Humans , Melanoma/drug therapy , Melanoma/pathology , MicroRNAs/metabolism , Neoplasm Invasiveness , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , RNA, Neoplasm/metabolism
14.
Fish Shellfish Immunol ; 85: 31-43, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29510253

ABSTRACT

A key goal of a successful vaccine formulation is the strong induction of persistent protective immune responses without producing side-effects. Adjuvants have been proved to be successful in several species at inducing increased immune responses against poorly immunogenic antigens. Fish are not the exception and promising results of adjuvanted vaccine formulations in many species are needed. In this study, over a period of 300 days, we characterized the apparent damage and immune response in gilthead seabream immunized by intraperitoneal injection with the model antigen keyhole limpet hemocyanin (KLH) alone or formulated with Montanide ISA water-in-oil (761 or 763), or Imject™ aluminum hydroxide (aluminium), as adjuvants. Throughout the trial, external tissue damage was examined visually, but no change was observed. Internally, severe adhesions, increased fat tissue, and hepatomegaly were recorded, but, without impairing animal health. At 120 days post priming (dpp), histopathological evaluations of head-kidney, spleen and liver revealed the presence of altered melanomacrophage centers (MMC) in HK and spleen, but not in liver. Surprisingly, in all aluminium treated fish, classical stains unmasked a toxic effect on splenic-MMC, unequivocally characterized by a strong cell depletion. Furthermore, at 170 dpp transmission electron microscopy confirmed this data. Paradoxically, at the same time powerful immune responses were recorded in most vaccinated groups, including the aluminium treatment. Whatever the case, despite the observed adhesions and MMC depletion, fish physiology was not affected, and most side-effects were resolved after 300 dpp. Therefore, our data support adjuvant inclusion, but strongly suggest that use of aluminium must be further explored in detail before it might benefit the rational design of new vaccination strategies in aquaculture.


Subject(s)
Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/toxicity , Aluminum/pharmacology , Aluminum/toxicity , Macrophages/drug effects , Sea Bream/immunology , Animals , Hemocyanins/administration & dosage , Hemocyanins/immunology , Immunization/veterinary , Injections, Intraperitoneal/veterinary , Microscopy, Electron, Transmission/veterinary , Spleen/drug effects , Spleen/metabolism
15.
Fish Shellfish Immunol ; 90: 215-222, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31039438

ABSTRACT

The zebrafish has unique advantages for understanding the evolution of vertebrate immunity and to model human diseases. In this review, we will firstly give an overview of the current knowledge on vertebrate innate immune receptors with special emphasis on the inflammasome and then summarize the main contribution of the zebrafish model to this field, including to the identification of novel inflammasome components and to the mechanisms involved in its activation, assembly and clearance of intracellular bacteria.


Subject(s)
Biological Evolution , Fish Proteins/genetics , Immunity, Innate , Receptors, Immunologic/genetics , Zebrafish/immunology , Animals , Disease Models, Animal , Evolution, Molecular , Fish Proteins/metabolism , Immunity, Innate/genetics , Models, Animal , Receptors, Immunologic/metabolism , Zebrafish/genetics , Zebrafish/metabolism
16.
Int J Cancer ; 142(3): 584-596, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28949016

ABSTRACT

The protein bcl-xL is able to enhance the secretion of the proinflammatory chemokine interleukin 8 (CXCL8) in human melanoma lines. In this study, we investigate whether the bcl-xL/CXCL8 axis is important for promoting melanoma angiogenesis and aggressiveness in vivo, using angiogenesis and xenotransplantation assays in zebrafish embryos. When injected into wild-type embryos, bcl-xL-overexpressing melanoma cells showed enhanced dissemination and angiogenic activity compared with control cells. Human CXCL8 protein elicited a strong proangiogenic activity in zebrafish embryos and zebrafish Cxcr2 receptor was identified as the mediator of CXCL8 proangiogenic activity using a morpholino-mediated gene knockdown. However, human CXCL8 failed to induce neutrophil recruitment in contrast to its zebrafish homolog. Interestingly, the greater aggressiveness of bcl-xL-overexpressing melanoma cells was mediated by an autocrine effect of CXCL8 on its CXCR2 receptor, as confirmed by an shRNA approach. Finally, correlation studies of gene expression and survival analyses using microarray and RNA-seq public databases of human melanoma biopsies revealed that bcl-xL expression significantly correlated with the expression of CXCL8 and other markers of melanoma progression. More importantly, a high level of co-expression of bcl-xL and CXCL8 was associated with poor prognosis in melanoma patients. In conclusion, these data demonstrate the existence of an autocrine CXCL8/CXCR2 signaling pathway in the bcl-xL-induced melanoma aggressiveness, encouraging the development of novel therapeutic approaches for high bcl-xL-expressing melanoma.


Subject(s)
Interleukin-8/metabolism , Melanoma/blood supply , bcl-X Protein/metabolism , Animals , Animals, Genetically Modified , Cell Line, Tumor , Heterografts , Humans , Interleukin-8/biosynthesis , Interleukin-8/genetics , Interleukin-8/pharmacology , Melanoma/genetics , Melanoma/metabolism , Neovascularization, Pathologic/metabolism , Recombinant Proteins/pharmacology , Tumor Microenvironment , Zebrafish , bcl-X Protein/biosynthesis , bcl-X Protein/genetics
17.
PLoS Pathog ; 12(6): e1005699, 2016 06.
Article in English | MEDLINE | ID: mdl-27351838

ABSTRACT

TNFα is a pleiotropic pro-inflammatory cytokine with a key role in the activation of the immune system to fight viral infections. Despite its antiviral role, a few viruses might utilize the host produced TNFα to their benefit. Some recent reports have shown that anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor virus replication have not been identified. Here, a rhabdoviral infection model in zebrafish allowed us to identify the mechanism of action by which Tnfa has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa signals through its receptor Tnfr2 to enhance viral replication. Mechanistically, Tnfa does not affect viral adhesion and delivery from endosomes to the cytosol. In addition, the host interferon response was also unaffected by Tnfa levels. However, Tnfa blocks the host autophagic response, which is required for viral clearance. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish, and advances our understanding of the previously enigmatic deleterious role of TNFα in certain viral infections.


Subject(s)
Host-Parasite Interactions/immunology , Rhabdoviridae Infections/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Autophagy/physiology , Blotting, Western , Disease Models, Animal , Fluorescent Antibody Technique , Organisms, Genetically Modified , Polymerase Chain Reaction , Rhabdoviridae/immunology , Virus Replication/physiology , Zebrafish
18.
J Immunol ; 197(4): 1379-88, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27402697

ABSTRACT

Although in mammals the TLR4/myeloid differentiation factor (MD)2/CD14 complex is responsible for the recognition of bacterial LPS, and it is known that the RP105/MD1 complex negatively regulates TLR4 signaling, the evolutionary history of LPS recognition remains enigmatic. Thus, zebrafish has orthologs of mammalian TLR4 (Tlr4a and Tlr4b), RP105, and MD1, but MD2 and CD14 seem to be absent from all fish genomes available to date. In addition, and to make the story more intriguing, zebrafish Tlr4a and Tlr4b do not recognize LPS, whereas the zebrafish Rp105/Md1 complex unexpectedly participates in the regulation of innate immunity and viral resistance. In this work, we report the identification of two novel splice variants of Md1, which are expressed at similar levels as full-length Md1 in the main immune-related organs of zebrafish and are highly induced upon viral infection. One of these splice variants, which is also expressed by mouse macrophages, lacks three conserved cysteine residues that have been shown to form disulfide bonds that are crucial for the three-dimensional structure of the MD-2-related lipid recognition domain of Md1. Functional studies in zebrafish demonstrate that this evolutionarily conserved splice variant shows higher antiviral activity than full-length Md1, but reduced proinflammatory activity, due to an impaired ability to activate the master regulator of inflammation, NF-κB. These results uncover a previously unappreciated evolutionarily conserved Md1 splice variant with important functions in the regulation of innate immunity and the antiviral response in zebrafish, and point to the need for additional functional studies in mammals on this little explored molecule.


Subject(s)
Antigens, Surface/immunology , Immunity, Innate/immunology , NF-kappa B/biosynthesis , Zebrafish Proteins/immunology , Animals , Base Sequence , Blotting, Western , HEK293 Cells , Humans , Mice, Inbred BALB C , Protein Isoforms/immunology , Sequence Homology, Nucleic Acid , Zebrafish
19.
J Immunol ; 196(2): 738-49, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26673139

ABSTRACT

As an organism is exposed to pathogens during very early development, specific defense mechanisms must take effect. In this study, we used a germ-free zebrafish embryo model to show that osmotic stress regulates the activation of immunity and host protection in newly hatched embryos. Mechanistically, skin keratinocytes were responsible for both sensing the hyposmolarity of the aquatic environment and mediating immune effector mechanisms. This occurred through a transient potential receptor vanilloid 4/Ca(2+)/TGF-ß-activated kinase 1/NF-κB signaling pathway. Surprisingly, the genes encoding antimicrobial effectors, which do not have the potential to cause tissue damage, are constitutively expressed during development, independently of both commensal microbes and osmotic stress. Our results reveal that osmotic stress is associated with the induction of developmental immunity in the absence of tissue damage and point out to the embryo skin as the first organ with full capacities to mount an innate immune response.


Subject(s)
Immunity, Innate/immunology , Keratinocytes/immunology , Skin/embryology , TRPV Cation Channels/immunology , Zebrafish Proteins/immunology , Zebrafish/embryology , Zebrafish/immunology , Animals , Embryo, Nonmammalian/immunology , Fluorescent Antibody Technique , Osmotic Pressure , Reverse Transcriptase Polymerase Chain Reaction , Skin/immunology , Transcriptome , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL